Qualifying Exam Problems: Analysis

(Jan 10, 2015)

1. (10 points) For each value of the real constant $a>0$, discuss the convergence of the series

$$
\sum_{n=1}^{\infty} \frac{a^{n}}{(n!)^{\frac{1}{n}}}
$$

Solution: By using the obvious inequality $n!\leq n^{n}$, we get

$$
\frac{a^{n}}{(n!)^{\frac{1}{n}}} \geq \frac{a^{n}}{n}
$$

Thus if $a \geq 1$, then the series diverges.
On the other hand, if $0<a<1$, then

$$
\frac{a^{n}}{(n!)^{\frac{1}{n}}} \leq a^{n}
$$

and the series converges by using comparison test.
2. Let $\vec{i}, \vec{j}, \vec{k}$ be the usual unit vectors in \mathbb{R}^{3}. Let \vec{F} be the vector field

$$
\left(x^{2}+y\right) \vec{i}+(x y) \vec{j}+\left(x z+z^{2}\right) \vec{k}
$$

a) (3 points) Compute $\nabla \times \vec{F}$.
b) (7 points) Compute the integral of $\nabla \times \vec{F}$ over the surface $x^{2}+y^{2}+z^{2}=4, z \geq 0$.

Solution:

$$
\nabla \times \vec{F}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
x^{2}+y & x y & x z+z^{2}
\end{array}\right|=(-z) \vec{j}+(y-1) \vec{k}
$$

Let $\Omega=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=4, z \geq 0\right\}, D=\left\{(x, y, 0) \in \mathbb{R}^{3} \mid x^{2}+y^{2} \leq 4\right\}$. Note that Ω and D have the same boundary. By using Stokes' Theorem, we get

$$
\begin{aligned}
\int_{\Omega} \nabla \times \vec{F} \cdot \overrightarrow{d S} & =\int_{\partial \Omega} \vec{F} \cdot \overrightarrow{d l} \\
& =\int_{\partial D} \vec{F} \cdot \overrightarrow{d l} \\
& =\int_{D}(\nabla \times \vec{F}) \cdot \overrightarrow{d S} \\
& =\int_{D}((-z) \vec{j}+(y-1) \vec{k}) \cdot \vec{k} d x d y=-4 \pi
\end{aligned}
$$

3. (10 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function such that $f \geq 0$ and $f^{\prime \prime} \leq 0$ everywhere. Prove that f must be a constant.

Solution: Let $x_{0} \in \mathbb{R}$. Enough to show $f^{\prime}\left(x_{0}\right)=0$. Now observe that for any t, we have

$$
0 \leq f\left(x_{0}+t\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) t+\frac{f^{\prime \prime}(\xi)}{2} t^{2} \leq f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) t
$$

Since t is arbitrary, the result follows.
4. (10 points) Three sets of entire functions are described below. For each set, do two things:
(i) Explain why there is a parametric representation of the form

$$
f(z)=c_{0}+c_{1} z+\ldots+c_{N} z^{N}, \quad\left(c_{0}, c_{1}, \ldots, c_{N}\right) \in S
$$

where $N \geq 0$ is an integer and S is a subset of \mathbb{C}^{1+N}.
(ii) Describe the value of N and the conditions defining S as completely as possible.

Here are the sets:
(a) All entire functions f such that $\operatorname{Im}\{f(z)\} \leq 0$ for all $z \in \mathbb{C}$.
(b) All entire functions f such that $|f(z)| \leq 2015+|z|^{10}$ for all $z \in \mathbb{C}$.
(c) All entire functions f such that $\left|f^{\prime \prime}(z)\right| \leq|z|$ for all $z \in \mathbb{C}$.

Solution:

(a) Given any such f, let $g(z)=\exp (-i f(z))$. Then g is entire, with

$$
|g(z)|=e^{\operatorname{Im}\{f(z)\}} \leq 1, \quad z \in \mathbb{C}
$$

By Liouville's Theorem, g must be constant. Since f is continuous, it follows that f must also be constant. To match the requested pattern, take $N=0$ and let S denote the set of $c \in \mathbb{C}$ where $\operatorname{Im}\{c\} \leq 0$.
(b) A direct application of the Extended Liouville Theorem implies that any f satisfying the given condition is a polynomial of degree at most 10 . So $N=10$ will work in the desired representation. A detailed description of S is not possible.
(c) Any f of the given family will make $g(z)=f^{\prime \prime}(z) / z$ analytic at all points $z \neq 0$, and bounded in a neighbourhood of $z=0$. Therefore g has a removable singularity at 0 and we can treat g as if it were entire. With this interpretation,

$$
|g(z)| \leq 1, \quad z \in \mathbb{C}
$$

so Liouville's Theorem implies that $g(z)=k$ for some complex k with $|k| \leq 1$. Consequently $f^{\prime \prime}(z)=k z$, which leads to

$$
f^{\prime}(z)=\frac{k}{2} z^{2}+c_{1}, \quad f(z)=\frac{k}{6} z^{3}+c_{1} z+c_{0} .
$$

Thus $N=3$ fits the desired pattern, with

$$
S=\left\{\left(c_{0}, c_{1}, c_{2}, c_{3}\right): c_{2}=0,\left|c_{3}\right| \leq \frac{1}{6}\right\}
$$

5. (a) (10 points) For each real constant a in the interval $-1<a<1$, present simple closed-form expressions for the integrals below:

$$
I(a)=\int_{0}^{2 \pi} \frac{d \theta}{1+a \sin \theta}, \quad J(a)=\int_{0}^{2 \pi} \frac{d \theta}{1+a \cos \theta}
$$

(b) Evaluate $I(4 i / 3)$, where I denotes the integral defined in part (a).

Note: Since the input $a=4 i / 3$ does not obey the assumptions in part (a), a complete solution must interpret and explain the term "evaluate" as well as producing a numerical value.

Solution:

(a) One has $I(a)=J(a)$ for all a, thanks to the change of variable $\phi=\theta-\pi / 2$. So focus on $I(a)$, recognizing $\sin \theta=\left(e^{i \theta}-e^{-i \theta}\right) /(2 i)$. The parametrization $z=e^{i \theta}$ makes $d z=i e^{i \theta} d \theta$, so $d \theta=d z /(i z)$ and

$$
I(a)=\int_{|z|=1} \frac{d z /(i z)}{(1+a(z-1 / z) /(2 i))}=\int_{|z|=1} \frac{2 d z}{a z^{2}+2 i z-a}=\int_{|z|=1} f(z) d z,
$$

where

$$
f(z):=\frac{2}{a z^{2}+2 i z-a}=\frac{2 / a}{\left(z-z_{0}\right)\left(z-z_{1}\right)}
$$

The poles of f can be determined using the quadratic formula:

$$
z=\frac{-2 i \pm \sqrt{-4+4 a^{2}}}{2 a}=\frac{i}{a}\left[-1 \pm \sqrt{1-a^{2}}\right] .
$$

Both are purely imaginary; we name them $z_{0}=\frac{i}{a}\left[-1+\sqrt{1-a^{2}}\right], z_{1}=\frac{i}{a}\left[-1-\sqrt{1-a^{2}}\right]$. Now

$$
\left|z_{1}\right|=\frac{1+\sqrt{1-a^{2}}}{|a|} \geq \frac{1}{|a|}>1
$$

so z_{1} lies outside the disk of interest, and (from the factorization above)

$$
\left|z_{0} z_{1}\right|=|-1|=1 \quad \Longrightarrow \quad\left|z_{0}\right|=\frac{1}{\left|z_{1}\right|}<1
$$

It follows that $I(a)=2 \pi i \operatorname{Res}\left(f ; z_{0}\right)$. To find this residue, suppose A and B make

$$
\frac{2 / a}{\left(z-z_{0}\right)\left(z-z_{1}\right)}=f(z)=\frac{A}{z-z_{0}}+\frac{B}{z-z_{1}}
$$

Then $2 / a=A\left(z-z_{1}\right)+B\left(z-z_{0}\right)$, and sending $z \rightarrow z_{0}$ gives

$$
\operatorname{Res}\left(f ; z_{0}\right)=A=\frac{2 / a}{z_{0}-z_{1}}=\frac{1}{i \sqrt{1-a^{2}}}
$$

Finally, recalling $I(a)=2 \pi i \operatorname{Res}\left(f ; z_{0}\right)$,

$$
J(a)=I(a)=\frac{2 \pi}{\sqrt{1-a^{2}}}
$$

(b) Analytic extension of $I(z)$ from the real interval $-1<z<1$ to a superset having nonempty interior in \mathbb{C} requires some kind of branch cut linking the points $z= \pm 1$. Go the long way, discarding all points $z=x+i 0$ for which $|x| \geq 1$. (Sketch.) Then

$$
I(4 i / 3)=\frac{2 \pi}{\sqrt{1+(16 / 9)}}=\frac{6 \pi}{5}
$$

6. (10 points) Prove that this equation has precisely four solutions in the annulus $\frac{3}{2}<|z|<2$:

$$
z^{5}+15 z+1=0
$$

Include a statement of the main theorem (or theorems) on which your analysis is based.

Solution: This is a double application of Rouché's Theorem. A simple form of this result says, "Let γ be a simple closed curve. Suppose f and g are analytic at all points on and inside γ, and

$$
|f(z)-g(z)|<|g(z)|, \quad z \in \gamma
$$

Then f and g have the same number of zeros of f inside γ, counted according to multiplicity." (There is a more elaborate form, which allows a finite number of poles for f and g inside γ.)
We use $f(z)=z^{5}+15 z+1$ in both cases.
First, take $g(z)=15 z+1$ and let γ be the circle where $|z|=3 / 2$. Clearly g has exactly one zero inside γ, at $z=-1 / 15$. And on γ, the triangle inequality gives both

$$
|g(z)|=|15 z+1| \geq 15|z|-1=15\left(\frac{3}{2}\right)-1=\frac{43}{2} \geq \frac{42}{2}=21
$$

and

$$
|f(z)-g(z)|=\left|z^{5}\right|=|z|^{5}=\frac{3^{5}}{2^{5}}=\frac{243}{32} \leq \frac{256}{32}=8
$$

Thus the conditions for Rouché's Theorem are in force, and we deduce that f has exactly one zero in the set where $|z|<3 / 2$.
Second, take $g(z)=z^{5}+15 z$ and let γ be the circle where $|z|=2$. This time each z on γ obeys

$$
|g(z)|=\left|z^{5}+15 z\right| \geq|z|\left(|z|^{4}-15\right)=2(16-15)=2
$$

and

$$
|f(z)-g(z)|=1
$$

Thus the conditions for Rouchés Theorem are in force, and we deduce that f has the same number of zeros as g has inside γ. Clearly $g(z)=z\left(z^{4}+15\right)$ has one zero at the origin and another four on the circle $|z|=15^{1 / 4}<2$, so f has 5 zeros with $|z|<2$.
Combining the results above, we find that all 5 roots of f obey $|z|<2$, and exactly one satisfies $|z|<3 / 2$. So there are exactly 4 zeros obeying $3 / 2 \leq|z|<2$. To get the chain of strict inequalities requested in the setup, it would suffice to re-run the first application of Rouché's Theorem on any circle of radius slightly larger than $3 / 2$. The gap between 21 and 8 noted above is positive, so there exists some $\epsilon>0$ for which the desired inequality remains valid on $|z|=\frac{3}{2}+\epsilon$, and this completes the proof.

