
Qualifying Exam Problems: Analysis
(Jan 10, 2015)

1. (10 points) For each value of the real constant a > 0, discuss the convergence of the series

∞∑
n=1

an

(n!)
1
n

.

Solution: By using the obvious inequality n! ≤ nn, we get

an

(n!)
1
n

≥ an

n
.

Thus if a ≥ 1, then the series diverges.

On the other hand, if 0 < a < 1, then

an

(n!)
1
n

≤ an

and the series converges by using comparison test.

2. Let ~i, ~j, ~k be the usual unit vectors in R3. Let ~F be the vector field

(x2 + y)~i + (xy)~j + (xz + z2)~k.

a) (3 points) Compute ∇× ~F .

b) (7 points) Compute the integral of ∇× ~F over the surface x2 + y2 + z2 = 4, z ≥ 0.

Solution:

∇× ~F =

∣∣∣∣∣∣
~i ~j ~k
∂x ∂y ∂z

x2 + y xy xz + z2

∣∣∣∣∣∣ = (−z)~j + (y − 1)~k.

Let Ω = {(x, y, z) ∈ R3|x2 + y2 + z2 = 4, z ≥ 0}, D = {(x, y, 0) ∈ R3|x2 + y2 ≤ 4}. Note that Ω and
D have the same boundary. By using Stokes’ Theorem, we get∫

Ω

∇× ~F · ~dS =
∫

∂Ω

~F · ~dl

=
∫

∂D

~F · ~dl

=
∫

D

(∇× ~F ) · ~dS

=
∫

D

((−z)~j + (y − 1)~k) · ~kdxdy = −4π.



3. (10 points) Let f : R → R be a twice differentiable function such that f ≥ 0 and f ′′ ≤ 0 everywhere.
Prove that f must be a constant.

Solution: Let x0 ∈ R. Enough to show f ′(x0) = 0. Now observe that for any t, we have

0 ≤ f(x0 + t) = f(x0) + f ′(x0)t +
f ′′(ξ)

2
t2 ≤ f(x0) + f ′(x0)t.

Since t is arbitrary, the result follows.

4. (10 points) Three sets of entire functions are described below. For each set, do two things:

(i) Explain why there is a parametric representation of the form

f(z) = c0 + c1z + . . . + cNzN , (c0, c1, . . . , cN ) ∈ S,

where N ≥ 0 is an integer and S is a subset of C1+N .
(ii) Describe the value of N and the conditions defining S as completely as possible.

Here are the sets:

(a) All entire functions f such that Im {f(z)} ≤ 0 for all z ∈ C.

(b) All entire functions f such that |f(z)| ≤ 2015 + |z|10 for all z ∈ C.
(c) All entire functions f such that |f ′′(z)| ≤ |z| for all z ∈ C.

Solution:

(a) Given any such f , let g(z) = exp (−if(z)). Then g is entire, with

|g(z)| = eIm{f(z)} ≤ 1, z ∈ C.

By Liouville’s Theorem, g must be constant. Since f is continuous, it follows that f must also
be constant. To match the requested pattern, take N = 0 and let S denote the set of c ∈ C
where Im {c} ≤ 0.

(b) A direct application of the Extended Liouville Theorem implies that any f satisfying the given
condition is a polynomial of degree at most 10. So N = 10 will work in the desired representa-
tion. A detailed description of S is not possible.

(c) Any f of the given family will make g(z) = f ′′(z)/z analytic at all points z 6= 0, and bounded
in a neighbourhood of z = 0. Therefore g has a removable singularity at 0 and we can treat g
as if it were entire. With this interpretation,

|g(z)| ≤ 1, z ∈ C,

so Liouville’s Theorem implies that g(z) = k for some complex k with |k| ≤ 1. Consequently
f ′′(z) = kz, which leads to

f ′(z) =
k

2
z2 + c1, f(z) =

k

6
z3 + c1z + c0.

Thus N = 3 fits the desired pattern, with

S =
{

(c0, c1, c2, c3) : c2 = 0, |c3| ≤
1
6

}
.
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5. (a) (10 points) For each real constant a in the interval −1 < a < 1, present simple closed-form expres-
sions for the integrals below:

I(a) =
∫ 2π

0

dθ

1 + a sin θ
, J(a) =

∫ 2π

0

dθ

1 + a cos θ
.

(b) Evaluate I(4i/3), where I denotes the integral defined in part (a).
Note: Since the input a = 4i/3 does not obey the assumptions in part (a), a complete solution must
interpret and explain the term “evaluate” as well as producing a numerical value.

Solution:

(a) One has I(a) = J(a) for all a, thanks to the change of variable φ = θ − π/2. So focus on
I(a), recognizing sin θ =

(
eiθ − e−iθ

)
/(2i). The parametrization z = eiθ makes dz = ieiθ dθ, so

dθ = dz/(iz) and

I(a) =
∫
|z|=1

dz/(iz)
(1 + a(z − 1/z)/(2i))

=
∫
|z|=1

2 dz

az2 + 2iz − a
=

∫
|z|=1

f(z) dz,

where

f(z) :=
2

az2 + 2iz − a
=

2/a

(z − z0)(z − z1)
.

The poles of f can be determined using the quadratic formula:

z =
−2i±

√
−4 + 4a2

2a
=

i

a

[
−1±

√
1− a2

]
.

Both are purely imaginary; we name them z0 = i
a

[
−1 +

√
1− a2

]
, z1 = i

a

[
−1−

√
1− a2

]
.

Now

|z1| =
1 +

√
1− a2

|a|
≥ 1
|a|

> 1,

so z1 lies outside the disk of interest, and (from the factorization above)

|z0 z1| = |−1| = 1 =⇒ |z0| =
1
|z1|

< 1.

It follows that I(a) = 2πiRes (f ; z0). To find this residue, suppose A and B make

2/a

(z − z0)(z − z1)
= f(z) =

A

z − z0
+

B

z − z1
.

Then 2/a = A(z − z1) + B(z − z0), and sending z → z0 gives

Res (f ; z0) = A =
2/a

z0 − z1
=

1
i
√

1− a2
.

Finally, recalling I(a) = 2πiRes (f ; z0),

J(a) = I(a) =
2π√

1− a2
.

(b) Analytic extension of I(z) from the real interval −1 < z < 1 to a superset having nonempty
interior in C requires some kind of branch cut linking the points z = ±1. Go the long way,
discarding all points z = x + i0 for which |x| ≥ 1. (Sketch.) Then

I(4i/3) =
2π√

1 + (16/9)
=

6π

5
.
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6. (10 points) Prove that this equation has precisely four solutions in the annulus
3
2

< |z| < 2:

z5 + 15z + 1 = 0.

Include a statement of the main theorem (or theorems) on which your analysis is based.

Solution: This is a double application of Rouché’s Theorem. A simple form of this result says,
“Let γ be a simple closed curve. Suppose f and g are analytic at all points on and inside γ, and

|f(z)− g(z)| < |g(z)| , z ∈ γ.

Then f and g have the same number of zeros of f inside γ, counted according to multiplicity.”
(There is a more elaborate form, which allows a finite number of poles for f and g inside γ.)

We use f(z) = z5 + 15z + 1 in both cases.

First, take g(z) = 15z + 1 and let γ be the circle where |z| = 3/2. Clearly g has exactly one zero
inside γ, at z = −1/15. And on γ, the triangle inequality gives both

|g(z)| = |15z + 1| ≥ 15 |z| − 1 = 15
(

3
2

)
− 1 =

43
2
≥ 42

2
= 21

and

|f(z)− g(z)| =
∣∣z5

∣∣ = |z|5 =
35

25
=

243
32

≤ 256
32

= 8.

Thus the conditions for Rouché’s Theorem are in force, and we deduce that f has exactly one zero
in the set where |z| < 3/2.

Second, take g(z) = z5 + 15z and let γ be the circle where |z| = 2. This time each z on γ obeys

|g(z)| =
∣∣z5 + 15z

∣∣ ≥ |z|
(
|z|4 − 15

)
= 2 (16− 15) = 2

and
|f(z)− g(z)| = 1.

Thus the conditions for Rouché’s Theorem are in force, and we deduce that f has the same number
of zeros as g has inside γ. Clearly g(z) = z(z4 + 15) has one zero at the origin and another four on
the circle |z| = 151/4 < 2, so f has 5 zeros with |z| < 2.

Combining the results above, we find that all 5 roots of f obey |z| < 2, and exactly one satisfies
|z| < 3/2. So there are exactly 4 zeros obeying 3/2 ≤ |z| < 2. To get the chain of strict inequalities
requested in the setup, it would suffice to re-run the first application of Rouché’s Theorem on any
circle of radius slightly larger than 3/2. The gap between 21 and 8 noted above is positive, so there
exists some ε > 0 for which the desired inequality remains valid on |z| = 3

2 + ε, and this completes
the proof.
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