
Qualifying Exam Problems: Linear Algebra and Differential Equations
(Jan 10, 2015)

1. a) (5 points) Let A ∈ Mn×n(R) be a symmetric matrix with all eigenvalues greater than or equal to
0. Show that there exists a square matrix B with A = BT B.

b) (3 points) show that for any square matrix C ∈ Mn×n(R), the matrix CT C is a symmetric matrix
with all eigenvalues greater than or equal to 0.

c) (2 points) Find the Jordan Canonical form of the matrix

A =

 2 2 3
1 3 3
−1 −2 −2



Solution: If A is a symmetric matrix then there exists and orthogonal matrix Q and a diagonal
matrix D (of eigenvalues λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0,. . .) such that AQ = QD or A = QDQT . Now since

D =


λ1 0 0 · · ·
0 λ2 0 · · ·
0 0 λ3 · · ·
...

...
. . .

 we may take E =


√

λ1 0 0 · · ·
0

√
λ2 0 · · ·

0 0
√

λ3 · · ·
...

...
. . .


(using the fact that λi ≥ 0) so that EET = E2 = D. Then A = QEET QT = BT B for B = ET QT .

Now if CT C is symmetric since
(
CT C

)T = CT
(
CT

)T = CT C and so CT C has real eigenvalues.
Let (CT C)x = λx with x 6= 0. But then xT (CT C)x = xT λx and so ||Cx|| = xT (CT C)x = xT λx =
λ||x||. Given that ||Cx|| ≥ 0 and ||x|| > 0 we deduce that λ ≥ 0.

For c), the characteristic polynomial is det(xI − A) = (x − 1)3. One can then proceed to find the
dim of the subspaces. Easy to check that the answer is1 0 0

0 1 1
0 0 1



2. (10 points) Let

A =

 0 −2 1
−2 3 −2

1 −2 0


The eigenvalues for A are -1,5. Determine an orthonormal basis for R3 that are eigenvectors for A and
then give an orthogonal matrix Q and a diagonal matrix D so that AQ = QD.

Solution: By a variety techniques we can determine det(A− λ) = −(λ + 1)2(λ− 5). Either use a
straightforward calculation or recall that the determinant is the product of the eigenvalues or that
the trace is the sum of the eigenvalues. The issue here is determining two orthogonal vectors in the
eigenspace for λ = −1.

λ = −1 :

1
1
1

 ,

 1
0
−1

 and λ = 5 :

 1
−2
1

 .



The students might use Gram Schmidt on the 2-dimensional eigenspace or perhaps using the cross
product given two eigenvectors. Now the students need to remember to normalize to obtain

Q =

 1/
√

3 1/
√

2 1/
√

6
1/
√

3 0 −2/
√

6
1/
√

3 −1/
√

2 1/
√

6

 , D =

 −1 0 0
0 −1 0
0 0 5



3. Let A ∈ Mn×n(R). Define the map f : Mn×n(R) → Mn×n(R) by

f(A) = AT .

(a) (2 points) Show that f is linear.

Solution: We check that f(A + B) = (A + B)T = AT + BT = f(A) + f(B) and f(kA) =
(kA)T = kAT = kf(A).

(b) (3 points) Determine the dimension of the eigenspace of eigenvalue 1 for f .

Solution: If A is an eigenvector of eigenvalue 1 then f(A) = A and so AT = A and so A is
symmetric. The dimension of the space of symmetric matrices is

(
n
2

)
+ n, namely the matrices

Eij + Eji for i 6= j and Eii (where Eij is the matrix in Mn×n(R) with a 1 in position i, j and
0’s elsewhere.

(c) (3 points) A matrix C is skew symmetric if CT = −C. Determine the dimension of the eigenspace
of eigenvalue −1 for f .

Solution: If A is an eigenvector of eigenvalue −1 then f(A) = −A and so AT = −A and so
A is skew symmetric. As above the dimension of the space of skew symmetric matrices is

(
n
2

)
,

namely the matrices Eij − Eji for i 6= j.

(d) (2 points) Show that any matrix A ∈ Mn×n(R) is a sum of a symmetric matrix B and a skew
symmetric matrix C.

Solution: Using arguments about eigenspaces we note that the eigenspaces of different eigen-
values are linearly independent namely the eigenspaces for 1 and −1 generate a vector space of
dimension

(
n
2

)
+n+

(
n
2

)
= n2 which is the dimension of Mn×n(R). So a basis for the eigenspace

for eigenvalue 1 and a basis for the eigenspace for eigenvalue -1 yield a basis for Mn×n(R) and
so every A ∈ Mn×n(R) can be written as a sum B + C where B is symmetric and C is skew
symmetric.
Alternatively one can note that A = 1

2 (A + AT ) + 1
2 (A−AT ).

4. (10 points) Show that y1(x) = x2 is one solution to the differential equation x2y′′ − 3xy′ + 4y = 0.
Use this as a starting point to find the general solution to the following second-order, nonhomogeneous
differential equation with non-constant coefficients

x2y′′ − 3xy′ + 4y = x2 lnx, (x > 0).
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Solution:

Substitute y1 = x2 into the homogeneous equation, we obtain

LHS = x2(2)− 3x(2x) + 4x2 = 2x2 − 6x2 + 4x2 = 0 = RHS.

To find the general solution to the nonhomogeneous equation, we need to find a second solution
y2(x) to the homogeneous equation and one particular solution to the non homogeneous one.

Rewrite the equations in the following form

y′′ − 3
x

y′ +
4
x2

y = y′′ + p(x)y′ + q(x)y = 0, and y′′ − 3
x

y′ +
4
x2

y = ln x.

Based on Abel’s theorem, the Wronskian is

W [y1, y2] = y1y
′
2 − y′1y2 = e−

∫
p(x)dx = e

∫ 3
x dx = x3.

Thus,

x2y′2 − 2xy2 = x3. ⇒ y′2 −
2
x

y2 = x.

Using method of integrating factors,(
x−2y2

)′
=

1
x

⇒ y2(x) = x2 lnx + Cx2 = x2 lnx.

The second term is redundant to y1(x) thus is eliminated by choosing C = 0. Knowing two solutions
of the homogeneous equation, one can find a particular solution to the nonhomogeneous equation
using Variation of Parameters. That method yields

yp(x) = u1(x)y1(x) + u2(x)y2(x),

where

u1(x) = −
∫

y2(x)g(x)
W [y1, y2](x)

dx = −
∫

(lnx)2

x
dx = −1

3
(lnx)3.

u2(x) =
∫

y1(x)g(x)
W [y1, y2](x)

dx =
∫

lnx

x
dx =

1
2
(lnx)2.

Thus,

yp(x) = −x2

3
(lnx)3 +

x2

2
(lnx)3 =

x2

6
(lnx)3.

Therefore,

y(x) = c1y1(x) + c2y2(x) + yp(x) = c1x
2 + c2x

2 lnx +
x2

6
(lnx)3.

5. (10 points) Solve the wave equation
∂ttu = 4∂xxu + xt, 0 < x < π, t > 0,

u(0, t) = 0, u(π, t) = 1, t > 0,

u(x, 0) = x, 0 < x < π,

(∂tu)(x, 0) = 1, 0 < x < π.
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Solution: 1) Set w(x) = x
π and v = u− w. Then

vtt = 4vxx + xt,

v(0, t) = v(π, t) = 0,

v(x, 0) = (1− 1
π )x,

(∂tv)(x, 0) = 1.

2) By using separation of variables, we expand v(x, t) as

v(x, t) =
∞∑

n=1

Tn(t) sinnx.

Then

T ′′n + 4n2Tn = hn(t), Tn(0) = an, T ′n(0) = bn,

where

(1− 1
π

)x =
∞∑

n=1

an sinnx,

1 =
∞∑

n=1

bn sinnx,

xt =
∞∑

n=1

hn(t) sinnx.

Easy to check that

an = (−1)n+1 2(π − 1)
nπ

,

bn =
2

nπ
(1 + (−1)n+1),

hn(t) = (−1)n+1 2
n

t.

Solving the equation for Tn then gives

Tn(t) = (−1)n+1 2(π − 1)
nπ

cos(2nt) + (
1

n2π
(1 + (−1)n+1)− (−1)n+1

4n4
) sin(2nt) +

(−1)n+1

2n3
t.

(To find the above one just note that Tn(t) = C1 cos(2nt) + C2 sin(2nt) + At, with At being the
particular solution)

Finally u(x, t) is given by the series:

u(x, t) =
x

π
+

∞∑
n=1

(
(−1)n+1 2(π − 1)

nπ
cos(2nt) + (

1
n2π

(1 + (−1)n+1)− (−1)n+1

4n4
) sin(2nt) +

(−1)n+1

2n3
t
)

sin(nx).

6. (a) (2 points) Turn the following nonlinear, second-order differential equation into a system of two
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first-order differential equations.
x′′ − x + x3 = 0.

Solution:
{

x′ = y,
y′ = x− x3.

(b) (2 points) Find all the steady states (fixed points) of the system obtained in (a).

Solution: (0, 0), (±1, 0).

(c) (3 points) Classify the type of all the steady states found in (b) and determine their stability.

Solution: (0, 0) is a saddle point, unstable. (±1, 0) are both centers, neutral stability.

(d) (3 points) Find a a function V (x, y) that is conserved by this system.

Solution:

dy

dx
=

y′

x′
=

x− x3

y
⇒ y2 + C = x2 − x4

2
⇒ V (x, y) = x2 − x4

2
− y2 = C.
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