The University of British Columbia
 Department of Mathematics
 Qualifying Examination-Analysis
 September 8, 2015

1. (a) Let \mathcal{F} denote the family of all functions $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ satisfying the identity

$$
\nabla \phi(x, y, z)=\left(\ln \left(y^{2}+1\right)+z^{2} e^{z^{2} x}\right) \mathbf{i}+\frac{2 x y}{1+y^{2}} \mathbf{j}+\left(2 x z e^{x z^{2}}+1\right) \mathbf{k}
$$

If \mathcal{F} is empty, explain why; if \mathcal{F} is not empty, identify all the functions it contains.
(b) For any smooth closed surface \mathcal{S} in \mathbb{R}^{3}, oriented using outward normals, define the flux

$$
\begin{aligned}
\Phi[\mathcal{S}] & =\iint_{\mathcal{S}} \mathbf{F} \bullet \widehat{\mathbf{n}} d S \\
\text { where } \quad \mathbf{F} & =\left(3 y^{2}-x^{3}-x \cos z\right) \mathbf{i}-4 y^{3} \mathbf{j}+\left(3 z+\sin z-x e^{y}-9 z^{3}\right) \mathbf{k} .
\end{aligned}
$$

Identify the surface \mathcal{S} that gives the largest possible value for $\Phi[\mathcal{S}]$.
2. Associate with every real-valued sequence a_{1}, a_{2}, \ldots, the values $\bar{a}, \bar{b} \in \mathbb{R} \cup\{ \pm \infty\}$ defined by

$$
\bar{a}=\limsup _{n \rightarrow \infty} a_{n}, \quad \bar{b}=\limsup _{n \rightarrow \infty} b_{n}, \quad \text { where } \quad b_{n}=\frac{a_{1}+a_{2}+\ldots+a_{n}}{n} .
$$

(a) Present a sequence $\left\{a_{n}\right\}$ for which $\bar{a} \neq \bar{b}$.
(b) One of the inequalities $\bar{a} \leq \bar{b}$ or $\bar{a} \geq \bar{b}$ holds in general. Decide which one, and prove it.
(c) Prove: If $|\bar{a}|<+\infty$ and $\left|a_{n}-\bar{a}\right| \rightarrow 0$ as $n \rightarrow \infty$, then $\bar{b}=\bar{a}$.
3. Here are three statements. For each statement, (i) define each underlined word or phrase, (ii) decide if the statement is true or false, and (iii) justify your decision by providing a suitable proof or counterexample.
(a) Whenever $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $\left\{x_{n}\right\}$ is a Cauchy sequence in \mathbb{R}, defining $y_{n}=f\left(x_{n}\right)$ makes $\left\{y_{n}\right\}$ a Cauchy sequence in \mathbb{R}.
(b) The only functions $f:[-1,1] \rightarrow \mathbb{R}$ that can be represented as a uniform limit of polynomials are the polynomial functions.
(c) The following function is Riemann integrable on the interval $[0,1]$:

$$
f(x)= \begin{cases}\frac{1}{n}, & \text { if } x=\frac{1}{n} \text { for some } n=1,2,3, \ldots \\ x^{2}, & \text { otherwise }\end{cases}
$$

4. Determine the number of zeros of the polynomial $f(z)=z^{4}-5 z+1$ in the annulus $\{z: 1<|z|<2\}$.
5. Let U be the open upper half plane with the unit segment joining 0 to i deleted. In symbols,

$$
U=\{z: \operatorname{Im} z>0\} \backslash\{z: \operatorname{Re} z=0 \text { and } 0<\operatorname{Im} z \leq 1\} .
$$

Find a conformal mapping of U onto the unit disk $\mathbb{D}(0,1)=\{z:|z|<1\}$. (If your map involves a function defined using a branch cut, specify the precise branch you use.)
6. Suppose that f is analytic in the region $|z|<R$, except for a simple pole at z_{0} with $0<\left|z_{0}\right|<R$. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be the Taylor series of f at the origin. Show that the following limit exists and is not 0 :

$$
A=\lim _{n \rightarrow \infty} a_{n} z_{0}^{n+1} .
$$

