The University of British Columbia Department of Mathematics Qualifying Examination—Linear Algebra and Differential Equations September 8, 2015

1. (a) Find A^{10} for the matrix A given below:

 $A = \begin{bmatrix} -7 & -3 \\ 18 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -2 & -1 \end{bmatrix}.$

- (b) Let $P_2[x]$ denote the set of all polynomials in x having real coefficients and degree at most 2. Determine a basis for $P_2[x]$ which contains both $1 + x + x^2$ and $2 + x + x^2$.
- (c) Find all possible values of det $(A + A^{-1})$, allowing arbitrary 3×3 matrices A with eigenvalues -1, 1, 2.
- 2. Let $M_{3\times3}$ be the vector space consisting of all 3×3 matrices (with elementwise addition and the usual scalar multiplication). Let 0 denote the zero matrix in $M_{3\times3}$. For each matrix A in $M_{3\times3}$, define

$$Z(A) = \{ B \in M_{3 \times 3} : BA = 0 \}.$$

- (a) Show that for each fixed $A \in M_{3\times 3}$, the set Z(A) is a subspace of $M_{3\times 3}$.
- (b) Find the dimension of Z(0), where 0 denotes the zero matrix in $M_{3\times 3}$.
- (c) Suppose $A \in M_{3\times 3}$ and rank(A) = 2. Find dim(Z(A)).
- 3. Let k vectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k$ in \mathbb{R}^d be given. Assume that, for some constant $\alpha \in (0, 1)$,

$$\mathbf{u}_i^T \mathbf{u}_j = \begin{cases} 1, & \text{if } i = j \\ \alpha, & \text{if } i \neq j \end{cases}$$

(Such a collection of unit vectors is called *equiangular*. Notice that the statement $\mathbf{u}_j^T \mathbf{u}_j = 1$ implicitly specifies that each \mathbf{u}_j is a *column* vector of unit length.)

Consider the set of $d \times d$ matrices $S = \{\mathbf{u}_i \mathbf{u}_i^T : i = 1, 2, \dots, k\}$. Prove the following.

- (a) If the matrices in S are linearly independent, then $k \leq \frac{d(d+1)}{2}$.
- (b) The matrices in S are, in fact, linearly independent. Hint: One approach starts by postulating the matrix equation $\sum_{i=1}^{k} a_i \mathbf{u}_i \mathbf{u}_i^T = 0$, then multiplying from the left by \mathbf{u}_i^T and from the right by \mathbf{u}_j .
- 4. Consider the following system of nonlinear ordinary differential equations:

$$\begin{cases} x' = y, \\ y' = x - x^2 \end{cases}$$

- (a) Find and classify all equilibrium/fixed points.
- (b) Find a function V(x, y) that is constant along every system trajectory.
- (c) Find the equation of the orbit (also referred to as a homoclinic orbit) that separates the closed orbits from the open ones in the (x, y)-plane.
- (d) Sketch the global phase portrait in the phase space (i.e., in the (x, y)-plane).

5. Solve the following nonhomogeneous wave equation using standard separation-of-variables methods:

$$\begin{array}{ll} \text{(PDE)} & u_{tt} = u_{xx} + \pi^2 \sin \pi x, & 0 < x < 1, & t > 0, \\ \text{(BC)} & u(0,t) = 0, & u_x(1,t) = -\pi, & t > 0, \\ \text{(IC)} & u(x,0) = 2 \sin \pi x, & 0 < x < 1, & \\ & u_t(x,0) = 0, & 0 < x < 1. & \end{array}$$

6. In a simple biological model, the region Ω defined by $x^2 + y^2 + z^2 < R^2$ represents a cell filled with a homogeneous fluid, and the goal is to model the concentration of a certain chemical in Ω . This concentration, C, depends on both time and location, according to

$$\frac{\partial C}{\partial t} = C_0 - C + \nabla^2 C. \tag{(*)}$$

Here the constant C_0 represents the initial concentration: at time t = 0, $C = C_0$ at each point in Ω . We consider a radially symmetric situation, in which C = C(r, t) for $r = \sqrt{x^2 + y^2 + z^2}$. On the cell wall, where r = R, the chemical enters the cell at a constant rate, leading to the boundary condition

$$\left. \frac{\partial C}{\partial r} \right|_{r=R} = J,\tag{\dagger}$$

where J is a constant. Recall that, for functions of the radial coordinate only, the Laplacian in spherical coordinates has the form

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right).$$

(a) Find a change of dependent variable that transforms the given PDE (*) into

$$\frac{\partial U}{\partial t} = -U + \frac{\partial^2 U}{\partial r^2}.$$
(**)

Also find the corresponding boundary conditions (BC's) for U at both r = 0 and r = R. (*Hint*: Pure inspiration is recommended. Failing that, seek f = f(r) so that $C = C_0 + f(r)U(r, t)$.)

- (b) Find a second change of variable that transforms the PDE (**) into a standard diffusion equation, $u_t = u_{rr}$. What are the boundary conditions for u?
- (c) In the case where J = 0 in (†), the conditions on u in part (b) lead to an eigenvalue problem. State this eigenvalue problem, and show that it has Sturm-Liouville type, but do not try to solve it.
- (d) Find the equilibrium (or steady-state) concentration, C = C(r), in terms of the constant J in (†).