# The University of British Columbia <br> Department of Mathematics Qualifying Examination-Algebra <br> January 9, 2016 

1. Let $J$ denote the $m \times m$ matrix of 1's.
(a) (6 points) Show that $J$ is a diagonalizable matrix. Give a basis for $\mathbf{R}^{m}$ consisting of eigenvectors for $J$.
(b) (4 points) Show that if we have an $m \times n$ matrix $A$ with $A A^{T}=2 J+5 I$ then $n \geq m$. (Fischer's inequality)
2. (a) (5 points) Given three mutually orthogonal vectors in $\mathbf{R}^{3}$, we can determine the matrices representing orthogonal projection onto each. What is the sum of the three matrices?
(b) (5 points) We say $\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ is a fibonacci sequence of real numbers if it satisfies the fibonacci recurrence namely if $a_{i+2}=a_{i+1}+a_{i}$ for $i=1,2,3, \ldots$. Let $U$ be the set of fibonacci sequences. Show that $U$ is a vector space over $\mathbf{R}$ where we can define the addition of two sequences in the obvious way. Give the dimension of $U$.
3. Let $A$ be an $n \times n$ matrix with real entries. Suppose $A^{2}=-I$.
(a) (2 points) Show that $A$ is invertible (or nonsingular).
(b) (2 points) Show that $A$ has no real eigenvalues.
(c) (3 points) Show that $n$ must be even.
(d) (3 points) Show that $\operatorname{det}(A)=1$.
4. (10 points) Calculate the addition and multiplication tables for the field $\mathbb{F}_{4}$.
5. (a) (7 points) Show that the group $S L_{2}\left(\mathbb{F}_{4}\right)$ naturally injects into the symmetric group $S_{5}$.
(b) (3 points) Show that $S L_{2}\left(\mathbb{F}_{4}\right)$ is isomorphic to $A_{4}$ (the alternating group).
6. (10 points) Let $R$ be a unitary commutative ring.
(a) (2 points) Define the characteristic of $R$.
(b) (3 points) Show that this characteristic of a field is either 0 or a prime number $p$.
(c) (5 points) Under what conditions is $x \mapsto x^{n}(n \in \mathbb{N})$ an endomorphism of $R$ ? Explain.
