The University of British Columbia Department of Mathematics Qualifying Examination—Algebra January 9, 2016

1. Let J denote the $m \times m$ matrix of 1's.

- (a) (6 points) Show that J is a diagonalizable matrix. Give a basis for \mathbf{R}^m consisting of eigenvectors for J.
- (b) (4 points) Show that if we have an $m \times n$ matrix A with $AA^T = 2J + 5I$ then $n \ge m$. (Fischer's inequality)
- 2. (a) (5 points) Given three mutually orthogonal vectors in \mathbb{R}^3 , we can determine the matrices representing orthogonal projection onto each. What is the sum of the three matrices?
 - (b) (5 points) We say $(a_1, a_2, a_3, ...)$ is a *fibonacci sequence* of real numbers if it satisfies the fibonacci recurrence namely if $a_{i+2} = a_{i+1} + a_i$ for i = 1, 2, 3, ... Let U be the set of fibonacci sequences. Show that U is a vector space over **R** where we can define the addition of two sequences in the obvious way. Give the dimension of U.
- 3. Let A be an $n \times n$ matrix with real entries. Suppose $A^2 = -I$.
 - (a) (2 points) Show that A is invertible (or *nonsingular*).
 - (b) (2 points) Show that A has no real eigenvalues.
 - (c) (3 points) Show that n must be even.
 - (d) (3 points) Show that det(A) = 1.
- 4. (10 points) Calculate the addition and multiplication tables for the field \mathbb{F}_4 .
- 5. (a) (7 points) Show that the group SL₂(F₄) naturally injects into the symmetric group S₅.
 (b) (3 points) Show that SL₂(F₄) is isomorphic to A₄ (the alternating group).
- 6. (10 points) Let R be a unitary commutative ring.
 - (a) (2 points) Define the characteristic of R.
 - (b) (3 points) Show that this characteristic of a field is either 0 or a prime number p.
 - (c) (5 points) Under what conditions is $x \mapsto x^n$ $(n \in \mathbb{N})$ an endomorphism of R? Explain.