The University of British Columbia Department of Mathematics Qualifying Examination—Analysis January 9, 2016

- 1. (10 points) Let $\vec{F} = (x^2 + y^2 + z^2)\hat{\imath} + (e^{x^2} + y^2)\hat{\jmath} + (3 + x + z^2)\hat{k}$ and let S be the part of the surface $x^2 + y^2 + z^2 = 2az + 3a^2$ having $z \ge 0$, oriented with the normal pointing away from the origin. Compute the flux, $\iint_S \vec{F} \cdot \hat{\mathbf{n}} \, dS$, of \vec{F} through S.
- 2. (10 points) Prove that a real-valued function f is uniformly continuous on (0, 1) if and only if it extends to a real-valued continuous function on [0, 1].
- 3. (10 points) Let a_{ij} be a real number for every $i, j \ge 1$. Suppose
 - (i) the series $\sum_{i=1}^{\infty} a_{ij}$ converges absolutely to a real number S_j for every $j \ge 1$,
 - (ii) the series $\sum_{j=1}^{\infty} a_{ij}$ converges absolutely to a real number T_i for every $i \ge 1$,
 - (iii) the series $\sum_{j=1}^{\infty} S_j$ and $\sum_{i=1}^{\infty} T_i$ both converge absolutely.

Can we conclude that $\sum_{j=1}^{\infty} S_j = \sum_{i=1}^{\infty} T_i$? Give a proof or a counterexample.

- 4. (10 points) Evaluate the integral $\int_0^\infty \frac{x^{-3/4}}{x+1} dx$.
- 5. (10 points) Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be analytic in a domain containing $\{z : |z| \le 1\}$. Give a careful proof, justifying all steps, that

$$\frac{1}{2\pi} \int_0^{2\pi} |f(e^{i\theta})|^2 d\theta = \sum_{n=0}^\infty |a_n|^2.$$

6. (10 points) Find all one-to-one entire functions of a complex variable z.