The University of British Columbia
 Department of Mathematics Qualifying Examination-Analysis
 January 9, 2016

1. (10 points) Let $\vec{F}=\left(x^{2}+y^{2}+z^{2}\right) \hat{\imath}+\left(e^{x^{2}}+y^{2}\right) \hat{\boldsymbol{\jmath}}+\left(3+x+z^{2}\right) \hat{\mathbf{k}}$ and let S be the part of the surface $x^{2}+y^{2}+z^{2}=2 a z+3 a^{2}$ having $z \geq 0$, oriented with the normal pointing away from the origin. Compute the flux, $\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S$, of \vec{F} through S.
2. (10 points) Prove that a real-valued function f is uniformly continuous on $(0,1)$ if and only if it extends to a real-valued continuous function on $[0,1]$.
3. (10 points) Let $a_{i j}$ be a real number for every $i, j \geq 1$. Suppose
(i) the series $\sum_{i=1}^{\infty} a_{i j}$ converges absolutely to a real number S_{j} for every $j \geq 1$,
(ii) the series $\sum_{j=1}^{\infty} a_{i j}$ converges absolutely to a real number T_{i} for every $i \geq 1$,
(iii) the series $\sum_{j=1}^{\infty} S_{j}$ and $\sum_{i=1}^{\infty} T_{i}$ both converge absolutely.

Can we conclude that $\sum_{j=1}^{\infty} S_{j}=\sum_{i=1}^{\infty} T_{i}$? Give a proof or a counterexample.
4. (10 points) Evaluate the integral $\int_{0}^{\infty} \frac{x^{-3 / 4}}{x+1} d x$.
5. (10 points) Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be analytic in a domain containing $\{z:|z| \leq 1\}$.

Give a careful proof, justifying all steps, that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{2} d \theta=\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}
$$

6. (10 points) Find all one-to-one entire functions of a complex variable z.
