The University of British Columbia Department of Mathematics Qualifying Examination—Linear Algebra and Differential Equations January 9, 2016

- 1. Let J denote the $m \times m$ matrix of 1's.
 - (a) (6 points) Show that J is a diagonalizable matrix. Give a basis for \mathbf{R}^m consisting of eigenvectors for J.
 - (b) (4 points) Show that if we have an $m \times n$ matrix A with $AA^T = 2J + 5I$ then $n \ge m$. (Fischer's inequality)
- 2. (a) (5 points) Given three mutually orthogonal vectors in \mathbb{R}^3 , we can determine the matrices representing orthogonal projection onto each. What is the sum of the three matrices?
 - (b) (5 points) We say $(a_1, a_2, a_3, ...)$ is a *fibonacci sequence* of real numbers if it satisfies the fibonacci recurrence namely if $a_{i+2} = a_{i+1} + a_i$ for i = 1, 2, 3, ... Let U be the set of fibonacci sequences. Show that U is a vector space over **R** where we can define the addition of two sequences in the obvious way. Give the dimension of U.
- 3. Let A be an $n \times n$ matrix with real entries. Suppose $A^2 = -I$.
 - (a) (2 points) Show that A is invertible (or *nonsingular*).
 - (b) (2 points) Show that A has no real eigenvalues.
 - (c) (3 points) Show that n must be even.
 - (d) (3 points) Show that det(A) = 1.
- 4. (10 points) Solve

$$\frac{d\vec{x}}{dt} = \begin{bmatrix} 2 & -5\\ 1 & -2 \end{bmatrix} \vec{x} + \begin{bmatrix} 3\cos 2t\\ 0 \end{bmatrix}$$

5. Use the method of Laplace transforms to solve the initial value problem

$$y'' + 5y = \begin{cases} t & \text{if } 0 \le t < 1\\ 2 & \text{if } t \ge 1 \end{cases}$$

where y(0) = 1 and y'(0) = 0.

6. (10 points) Consider the differential equation

$$\frac{d^2y}{dx^2} + \sin y = 0$$

- (a) Convert this equation into a system of two first order differential equations.
- (b) Find all critical points (steady states, fixed points) of the system of part (a).
- (c) Classify the type of each of the critical points of part (b) and determine their stability.
- (d) Prove that if $\frac{dy}{dx}(0) = 0$ and $|y(0)| = a < \pi$, then $|y(x)| \le a$ for all $x \ge 0$.
- (e) Prove that if $\frac{dy}{dx}(0) > 2$ and y(0) = 0, then $\lim_{x \to \infty} y(x) = +\infty$.

$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$
1	$\frac{1}{s}, s > 0$
e^{at}	$\frac{1}{s-a}, s>a$
t^n , $n = \text{positive integer}$	$\frac{n!}{s^{n+1}}, s > 0$
$t^p, p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}, s > 0$
sin at	$\frac{a}{s^2+a^2}, s>0$
$\cos at$	$\frac{s}{s^2 + a^2}, s > 0$
sinh at	$\frac{a}{s^2 - a^2}, s > a $
$\cosh at$	$\frac{s}{s^2 - a^2}, s > a $
$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}, s > a$
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, s > a$
$t^n e^{at}$, $n = \text{positive integer}$	$\frac{n!}{(s-a)^{n+1}}, s > a$
$u_c(t) = \begin{cases} 0 & \text{if } x < c \\ 1 & \text{if } x > c \end{cases}$	$rac{e^{-cs}}{s}, \ s>0$
$u_c(t)f(t-c)$	$e^{-cs}F(s)$
$u_c(t)g(t)$	$e^{-cs}\mathcal{L}\left\{g(t+c)\right\}(s)$
$e^{ct}f(t)$	F(s-c)
f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right), c > 0$
$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)
$\delta(t-c)$	e^{-cs}
$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$
$(-t)^n f(t)$	$F^{(n)}(s)$

Table of Laplace transforms