UBC Department of Mathematics Qualifying Exam in Algebra

September 6, 2016

Each problem is worth 10 points.
Problem 1: (a) Let $V \simeq \mathbb{R}^{n}$ be an n-dimensional real vector space and

$$
f, g: V \rightarrow V
$$

be linear transformations. Show that $f \circ g-g \circ f \neq \mathrm{id}_{V}$, where id_{V} denotes the identity transformation $V \rightarrow V$.
(b) Now suppose $V \simeq \mathbb{F}_{p}^{n}$ be the n-dimensional vector space over the field of p elements. Show that if $n=p$, then there exist linear transformations $f, g: \mathbb{V} \rightarrow V$ such that $f \circ g-g \circ f=\mathrm{id}_{V}$.

Problem 2: Does the alternating group A_{4} have a subgroup of order 6?
Problem 3: Find the Jordan Canonical form of the matrix

$$
A=\left(\begin{array}{ccc}
3 & -1 & 5 \\
0 & 2 & 6 \\
1 & -1 & 5
\end{array}\right)
$$

Problem 4: Let R be a commutative ring (with identity) and let I and J be distinct maximal ideals in R. Prove the following variants of the Chinese Remainder Theorem:
(a) The morphism $R \rightarrow R / I \times R / J$ given by $f: r \rightarrow(r(\bmod I), r(\bmod J))$ is surjective.
(b) More generally, the morphism

$$
R \rightarrow R / I^{m} \times R / J^{n}
$$

given by $g: r \rightarrow\left(r\left(\bmod I^{m}\right), r\left(\bmod J^{n}\right)\right)$ is surjective, for any integers $m, n \geq 1$.
Problem 5: In this problem n will denote a positive integer, A will denote an $n \times n$ matrix with real entries, and $a_{i j}$ will denote the entry in the i th row and the j th column of A.
(a) Suppose $a_{i j}=x_{i} y_{j}$, where x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} are n-tuples of real numbers. Show that $\operatorname{rank}(A) \leq 1$.
(b) Let $f(x)$ be a polynomial of degree d with real coefficients, and x_{1}, \ldots, x_{n} be real numbers. Consider the matrix A whose entries are given by the formula $a_{i j}:=f\left(x_{i}+x_{j}\right)$. Show that $\operatorname{rank}(A) \leq d+1$.

Problem 6: Let G be a finite group. Show that there exists a finite Galois field extension $K \subset L$ with $\operatorname{Gal}(L / K)=G$.

