UBC Department of Mathematics Qualifying Exam in Analysis

September 6, 2016
Every problem is worth 10 points.
Problem 1: Let $\sum_{n=1}^{\infty} a_{n}$ be a convergent series of positive terms. Show that the series $\sum_{n=1}^{\infty} a_{n}^{\frac{n}{n+1}}$ also converges.

Hint: consider the set $S:=\left\{n: a_{n}^{\frac{1}{n+1}} \leq 1 / 2\right\}$.
Problem 2: Find all entire functions $f(x+i y)=u(x)+i v(y)$, with the real valued functions $u(x)$ and $v(y)$ depending only on x and y respectively.

Problem 3: Consider the vector field $F=\left\langle x y^{2}+z, x^{2} y+2, x\right\rangle$. Evaluate the line integral $\int_{C} F \cdot d r$ where $C=\left(3^{t / \pi}, \sin t, \cos t\right)$ for $t \in[0, \pi]$.

Problem 4: Evaluate $I=\int_{-\infty}^{\infty} \frac{\cos x}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$.
Problem 5: Let $f(x)$ be a uniform limit of real differentiable functions $f_{n}(x)$ on $[-1,1]$. Assume that $\left|f_{n}^{\prime}(x)\right| \leq C$ for some C independent of n and $x \in[-1,1]$. Recall that, under these assumptions, $f(x)$ is always continuous.
(a) Is the function $f(x)$ necessarily differentiable? If so, prove it. If not, provide a counterexample.
(b) Suppose that, in addition, the derivatives $f_{n}^{\prime}(x)$ converge pointwise to $g(x)$ and $f(x)$ is differentiable. Then, is it necessarily true that $f^{\prime}(x)=g(x)$? If so, prove it. If not, provide a counterexample.

Problem 6: Find the maximum value of $\left|(1-z) e^{z}\right|$ in the region $|z| \leq 1$.

