September 6, 2016

Every problem is worth 10 points.

Problem 1: Let $\sum_{n=1}^{\infty} a_n$ be a convergent series of positive terms. Show that the series $\sum_{n=1}^{\infty} a_n^{\frac{n}{n+1}}$ also converges.

Hint: consider the set $S := \{n : a_n^{\frac{1}{n+1}} \le 1/2\}.$

Problem 2: Find all entire functions f(x + iy) = u(x) + iv(y), with the real valued functions u(x) and v(y) depending only on x and y respectively.

Problem 3: Consider the vector field $F = \langle xy^2 + z, x^2y + 2, x \rangle$. Evaluate the line integral $\int_C F \cdot dr$ where $C = (3^{t/\pi}, \sin t, \cos t)$ for $t \in [0, \pi]$.

Problem 4: Evaluate $I = \int_{-\infty}^{\infty} \frac{\cos x}{(x^2 + 1)(x^2 + 4)} dx.$

Problem 5: Let f(x) be a uniform limit of real differentiable functions $f_n(x)$ on [-1, 1]. Assume that $|f'_n(x)| \leq C$ for some C independent of n and $x \in [-1, 1]$. Recall that, under these assumptions, f(x) is always continuous.

- (a) Is the function f(x) necessarily differentiable? If so, prove it. If not, provide a counterexample.
- (b) Suppose that, in addition, the derivatives $f'_n(x)$ converge pointwise to g(x) and f(x) is differentiable. Then, is it necessarily true that f'(x) = g(x)? If so, prove it. If not, provide a counterexample.

Problem 6: Find the maximum value of $|(1-z)e^z|$ in the region $|z| \le 1$.