UBC Department of Mathematics Qualifying Exam in Differential Equations

September 6, 2016

Each problem is worth 10 points.

Problem 1: (a) Find the eigenvalues of the 3×3 matrix

$$
A=\left(\begin{array}{lll}
5 & -7 & 7 \\
4 & -3 & 4 \\
4 & -1 & 2
\end{array}\right)
$$

(b) Is A diagonalizable?

Problem 2: Consider the ODE $y^{\prime \prime}-y=e^{-t}$ for $y=y(t)$.
(a) Find the general solution.
(b) For which values of the initial conditions $y(0)=y_{0}$ and $y^{\prime}(0)=v_{0}$, does the solution $y(t)$ remain bounded as $t \rightarrow \infty$?

Problem 3: Let

$$
A=\left(\begin{array}{ccccc}
\lambda & 1 & & & \\
& \lambda & 1 & & 0 \\
& & \ddots & \ddots & \\
& 0 & & \lambda & 1 \\
& & & & \lambda
\end{array}\right)
$$

be an $n \times n$ Jordan block with eigenvalue λ.
(a) Suppose $|\lambda|<1$. Show that $\lim _{d \rightarrow \infty} A^{d}=\mathbf{0}_{n \times n}$, where $\mathbf{0}_{n \times n}$ denotes the zero matrix of size $n \times n$.
(b) Suppose $\mathbf{w}:=\lim _{d \rightarrow \infty} A^{d} \cdot \mathbf{v}$ exists and is non-zero for some vector \mathbf{v} in \mathbb{R}^{n}. Show that this is only possible if $\lambda=1$ and \mathbf{w} is a non-zero scalar multiple of $\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right)$.

Problem 4: Consider the following ODE system for $(x(t), y(t))$:

$$
\begin{aligned}
& \frac{d x}{d t}=y-y^{4} \\
& \frac{d y}{d t}=x^{2}-x
\end{aligned}
$$

(a) Find all the critical points, and classify them as sinks, sources, saddles, or centres.
(b) Show that

$$
H(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right)-\frac{1}{3} x^{3}-\frac{1}{5} y^{5}
$$

remains constant for solutions $(x(t), y(t))$.
(c) Prove that the origin $(x, y)=(0,0)$ is stable in the sense that for any given $\epsilon>0$, all solutions $(x(t), y(t))$ with initial conditions $(x(0), y(0))$ sufficiently close to $(0,0)$, remain for all time within distance ϵ of $(0,0)$.

Problem 5: In this problem n will denote a positive integer, A will denote an $n \times n$ matrix with real entries, and $a_{i j}$ will denote the entry in the i th row and the j th column of A.
(a) Suppose $a_{i j}=x_{i} y_{j}$, where x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} are n-tuples of real numbers. Show that $\operatorname{rank}(A) \leq 1$.
(b) Let $f(x)$ be a polynomial of degree d with real coefficients, and x_{1}, \ldots, x_{n} be real numbers. Consider the matrix A whose entries are given by the formula $a_{i j}:=f\left(x_{i}+x_{j}\right)$. Show that $\operatorname{rank}(A) \leq d+1$.

Problem 6: Consider the following initial-boundary-value PDE problem for a function $u(x, t)$:

$$
\left\{\begin{array}{l}
u_{t}=u_{x x}+\alpha u^{3} \quad 0<x<1, t>0 \tag{1}\\
u(0, t)=u(1, t)=0 \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

where $\alpha \in \mathbb{R}$ is a parameter.
(a) If $\alpha=0$ and $u_{0}(x)=x-x^{2}$, find the solution to (1).
(b) Show that if $u(x, t)$ is a smooth (infinitely differentiable function of (x, t)) solution of (1), then the quantity

$$
E(t)=\int_{0}^{1}\left(\frac{1}{2}\left(u_{x}(x, t)\right)^{2}-\frac{\alpha}{4}(u(x, t))^{4}\right) d x
$$

is non-increasing.
(c) For which values of α does problem (1) admit a non-zero static (time-independent) solution? Justify.

