UBC Department of Mathematics Qualifying Exam in Analysis

 January, 2017Every problem is worth 10 points.
Problem 1: Let $A=\left[\begin{array}{cc}2 & 2 \\ 2 & -1\end{array}\right]$, and denote $\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$.

1. Find the general solution of the system $\frac{d}{d t} \vec{x}=A \vec{x}$.
2. Solve the initial value problem

$$
\frac{d}{d t} \vec{x}=A \vec{x}+\left[\begin{array}{c}
t \\
0
\end{array}\right], \quad \vec{x}(0)=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Problem 2: Consider the following ODE for $x(t): \frac{d^{2} x}{d t^{2}}+\frac{d x}{d t}=x^{3}-x$.

1. Rewrite this ODE as a system of two first-order equations.
2. Find all the critical points of the resulting system, and classify them as sinks, sources, saddles, or centres.
3. Show that if $x(t)$ is a solution, the quantity $\left(\frac{d x}{d t}\right)^{2}+x^{2}-\frac{1}{2} x^{4}$ is non-increasing.
4. Prove that the constant solution $x(t) \equiv 0$ is stable in this sense: for any $\epsilon>0$, every solution for which $(x(0))^{2}+\left(\frac{d x}{d t}(0)\right)^{2}$ is sufficiently small, satisfies $(x(t))^{2}+\left(\frac{d x}{d t}(t)\right)^{2}<\epsilon$ for all $t>0$.

Problem 3: Consider the ODE eigenvalue problem:

$$
(L y)(x)=-\left(1+x^{2}\right) y^{\prime \prime}(x)+A(x) y^{\prime}(x)=\lambda y(x), \quad 0<x<1
$$

with either Dirichlet BCs: $y(0)=y(1)=0$; or Neumann BCs: $y^{\prime}(0)=y^{\prime}(1)=0$.

1. Find the function $A(x)$ such that the ordinary differential operator L is self-adjoint (ie of Sturm-Liouville type) for either type of BC. For the rest of this question, take $A(x)$ to be that function.
2. Listing the eigenvalues λ in order: $\lambda_{0} \leq \lambda_{1} \leq \lambda_{2} \leq \cdots$, show that for Dirichlet BCs $\lambda_{0}>0$, and for Neumann BCs $\lambda_{1}>0$.
3. Find the solution $u(x, t)$ of the following initial-boundary-value PDE problem in terms of the eigenvalues $\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots$ and corresponding eigenfunctions (but you need not actually find these eigenvalues and eigenfunctions):

$$
\begin{aligned}
& u_{t}=\left(1+x^{2}\right) u_{x x}-A(x) u_{x}, \quad 0<x<1, \quad t>0 \\
& u(0, t)=1, u(1, t)=2, \quad u(x, 0)=1+x
\end{aligned}
$$

Problem 4: Find a matrix, $A \in \mathbb{R}^{2 \times 2}$, satisfying

$$
A=A^{T}, \quad A_{1,1}+A_{2,2}=5, \quad \sum_{i, j} A_{i, j}=19, \quad-A_{1,1}+A_{2,1}+A_{1,2}=11 .
$$

Answer: This is a set of 4 linear equations with 4 unknowns. It can be solved via Gaussian elimination to give

$$
A=\left[\begin{array}{ll}
3 & 7 \\
7 & 2
\end{array}\right]
$$

Problem 5: Let \mathcal{P}_{2} be the space of polynomials $a+b x+c x^{2}$ of degree at most 2 and with the inner product

$$
\langle p, q\rangle=\int_{-1}^{1} p(x) \cdot q(x) d x
$$

1. Give an orthonormal basis for the orthogonal complement of $\operatorname{span}(x)$.
2. Let l be the functional defined by $l(p):=p(0)$ for each $p \in \mathcal{P}_{2}$. Find $h \in \mathcal{P}_{2}$ so that $l(p)=\langle h, p\rangle$ for each $p \in \mathcal{P}_{2}$.

Problem 6: Let $A, B \in \mathbb{R}^{3 \times 3}$. Let $I \in \mathbb{R}^{3 \times 3}$ be the 3 by 3 identity matrix. Suppose that A has eigenvalues $\{-1,4,10\}$ and B has eigenvalues $\{-2,4,7\}$. For each of the following matrices, if possible determine the eigenvalues. If not, state that there is insufficient information to determine the eigenvalues.
(a) A^{2}.
(b) $A \cdot B$.
(c) $A+B$.
(d) $A-5 \cdot I$.
(e) $A+A^{-1}$.

