The University of British Columbia
 Department of Mathematics Qualifying Examination-Analysis

September 5, 2017

1. (10 points) Let

$$
\vec{F}=\left(-y z \sin 2 x-x^{2} y\right) \hat{\boldsymbol{\imath}}+\left(z \cos ^{2} x\right) \hat{\boldsymbol{\jmath}}+\left(e^{z^{2}}+y \cos ^{2} x\right) \hat{\mathbf{k}} .
$$

Let C be the curve given by the intersection of the cylinder $x^{2}+y^{2}=4$ and the plane $x+2 y+z=6$, oriented so that its projection on the plane $z=0$ is oriented anticlockwise. Calculate

$$
\oint_{C} \text { F.dr. }
$$

2. (10 points) For each of the following questions, if the answer is yes, give a proof; if the answer is no, give a counterexample with proof.

In each of the following questions, f_{n} is a sequence of continuous functions on $[0,1]$.
(i) Assume that f_{n} converges uniformly to a function f. Must f be continuous?
(ii) Assume that f_{n} converges pointwise to a continuous function f. Must f_{n} converge uniformly to f ?
(iii) Assume that f_{n} is a monotone decreasing sequence (i.e., for all $x \in[0,1]$ and all n, $\left.f_{n}(x) \geq f_{n+1}(x)\right)$, that converges pointwise to a function f. Must f be continuous?
3. (10 points) Say that a non-negative sequence $\left(b_{n}\right)$ is super-summable if for every nonnegative sequence $\left(a_{n}\right)$ such that $a_{n} \rightarrow 0$ we have $\sum_{n} a_{n} b_{n}$ converges. Prove that $\left(b_{n}\right)$ is super-summable if and only if $\sum b_{n}$ converges.
4. Evaluate

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{1+x^{6}}
$$

5. Instruction. Carefully specify any branches or branch cuts you may use.
(A) Let $H=\{z \in \mathbb{C}: \operatorname{Re}(z) \geq 0\} \backslash\{0\}$. Write down, explicitly in terms of elementary functions, a continuous function $h: H \rightarrow \mathbb{R}$, with the properties:
(i) h is harmonic in the interior of H,
(ii) $h(z) \equiv 1$ on the positive imaginary axis,
(iii) $h(z) \equiv 0$ on the negative imaginary axis.
(B) Let $D=\{z \in \mathbb{C}:|z| \leq 1\} \backslash\{1,-1\}$. Write down, explicitly in terms of elementary functions, a continuous function $f: D \rightarrow \mathbb{R}$, with the properties:
(i) f is harmonic in the interior of D,
(ii) $f(z)=1$, for $|z|=1$ and $\operatorname{Im}(z)>0$,
(iii) $f(z)=-1$, for $|z|=1$ and $\operatorname{Im}(z)<0$.
6. Let $D=\{z \in \mathbb{C}:|z|<1\}$.
(i) Write down a holomorphic (i.e., complex analytic) function $f(z): D \rightarrow D$ with the property that $f\left(-\frac{1}{2}\right)=0$ and $f(0)=\frac{1}{2}$.
(ii) Let $g: D \rightarrow D$ be an arbitrary holomorphic (i.e., complex analytic) function such that $g\left(-\frac{1}{2}\right)=0$ and $g(0)=\frac{1}{2}$. Find $g\left(\frac{1}{2}\right)$.
