The University of British Columbia **Department of Mathematics** Qualifying Examination—Analysis

September 5, 2017

1. (10 points) Let

$$\vec{F} = (-yz\sin 2x - x^2y)\,\hat{\imath} + (z\cos^2 x)\,\hat{\jmath} + (e^{z^2} + y\cos^2 x)\,\hat{k} \;.$$

Let C be the curve given by the intersection of the cylinder $x^2 + y^2 = 4$ and the plane x+2y+z=6, oriented so that its projection on the plane z=0 is oriented anticlockwise. Calculate

$$\oint_C \mathbf{F}.\mathbf{dr}$$

2. (10 points) For each of the following questions, if the answer is yes, give a proof; if the answer is no, give a counterexample with proof.

In each of the following questions, f_n is a sequence of continuous functions on [0, 1].

(i) Assume that f_n converges uniformly to a function f. Must f be continuous?

(ii) Assume that f_n converges pointwise to a continuous function f. Must f_n converge uniformly to f?

(iii) Assume that f_n is a monotone decreasing sequence (i.e., for all $x \in [0, 1]$ and all n, $f_n(x) \ge f_{n+1}(x)$, that converges pointwise to a function f. Must f be continuous?

- 3. (10 points) Say that a non-negative sequence (b_n) is super-summable if for every nonnegative sequence (a_n) such that $a_n \to 0$ we have $\sum_n a_n b_n$ converges. Prove that (b_n) is super-summable if and only if $\sum b_n$ converges.
- 4. Evaluate

$$\int_{-\infty}^{\infty} \frac{x^2}{1+x^6}$$

5. Instruction. Carefully specify any branches or branch cuts you may use.

(A) Let $H = \{z \in \mathbb{C} : \operatorname{Re}(z) \ge 0\} \setminus \{0\}$. Write down, explicitly in terms of elementary functions, a continuous function $h: H \to \mathbb{R}$, with the properties:

(i) h is harmonic in the interior of H,

(ii) $h(z) \equiv 1$ on the positive imaginary axis,

(iii) $h(z) \equiv 0$ on the negative imaginary axis.

(B) Let $D = \{z \in \mathbb{C} : |z| \le 1\} \setminus \{1, -1\}$. Write down, explicitly in terms of elementary functions, a continuous function $f : D \to \mathbb{R}$, with the properties:

(i) f is harmonic in the interior of D,

(ii) f(z) = 1, for |z| = 1 and Im(z) > 0,

(iii) f(z) = -1, for |z| = 1 and Im(z) < 0.

6. Let $D = \{z \in \mathbb{C} : |z| < 1\}.$

(i) Write down a holomorphic (i.e., complex analytic) function $f(z): D \to D$ with the property that $f(-\frac{1}{2}) = 0$ and $f(0) = \frac{1}{2}$.

(ii) Let $g: D \to D$ be an arbitrary holomorphic (i.e., complex analytic) function such that $g(-\frac{1}{2}) = 0$ and $g(0) = \frac{1}{2}$. Find $g(\frac{1}{2})$.