The University of British Columbia
 Department of Mathematics Qualifying Examination-Algebra
 January 6, 2018

1. (10 points) Find an $n \times n$-matrix P with real entries, such that $P^{T}=P, P^{2}=P$, and whose null space is spanned by the vector $(1, \ldots, 1)^{T}$.
2. (10 points) Let A be an $n \times n$ matrix with complex entries. Suppose that m is a positive integer such that A^{m} is diagonalizable. Prove that A^{m+1} is diagonalizable.
3. (10 points) Suppose that A is a 2×2 matrix with real entries. Suppose that $\operatorname{det} A=1$, and that A does not have a real eigenvalue. Prove that there exists an invertible 2×2-matrix S, with real entries, such that $S^{-1} A S$ is equal to the rotation matrix $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$, for some $\theta \in(0, \pi) \subset \mathbb{R}$.
4. (10 points) Let G be a finite group, such that for every subgroup H of G, there exists a homomorphism $\phi: G \rightarrow H$, such that $\phi(x)=x$, for all $x \in H$. Prove that G is a product of cyclic groups of prime order.
5. (10 points) Let p be a prime number. Prove that there are exactly $\frac{1}{p}\left(2^{p}-2\right)$ irreducible polynomials of degree p in one variable over the field with 2 elements.
6. (10 points) Determine the structure of the Galois group of the polynomial $x^{4}-4 x^{2}+2$ of the rationals.
