The University of British Columbia
 Department of Mathematics
 Qualifying Examination-Analysis
 January 6, 2018

1. (10 points) (a) Determine if the following series converges or diverges:

$$
\sum(-1)^{n} \frac{\sqrt{n}}{1+\sqrt{n}}
$$

(b) For which values of $\alpha>0$ does the following series converge?

$$
\sum \frac{1}{n^{\alpha}\left(\log _{2} n\right)^{2}}
$$

(c) Find the radius of convergence of the following power series:

$$
\sum \frac{z^{n}}{\left(1+(-1)^{n}\right) 2^{n}+\left(1-(-1)^{n}\right) 3^{n}}
$$

2. (10 points) Let S be the part of the cylinder $(x+y+1)^{2}+z^{2}=4$ which lies in the first octant. Find the flux of \vec{F} upwards through S where

$$
\vec{F}=x y \hat{\boldsymbol{\imath}}+(z-x y) \hat{\boldsymbol{\jmath}} .
$$

3. (10 points) Let I be a bounded interval in \mathbb{R} and f_{n} be continuous functions on I such that $f_{n+1}(x) \leq$ $f_{n}(x)$ for all $x \in I, n \in \mathbb{N}$. Suppose that $f_{n}(x)$ converges to 0 for each $x \in I$.
(a) Give a counterexample to show that the conditions above do not imply that $f \rightarrow 0$ uniformly.
(b) Suppose that I is compact. Prove that $f \rightarrow 0$ uniformly.
4. (10 points) How many zeros does the polynomial $z^{4}+\frac{1}{4} z^{3}-\frac{1}{4}$ have in the annulus $\left\{z \in \mathbb{C}: \frac{1}{2}<|z|<1\right\}$?
5. (10 points) Determine for which integer values of n (positive, negative, or 0), there exists a holomorphic function defined in the region $|z|>1$, whose derivative is

$$
\frac{z^{n}}{1+z^{2}} .
$$

6. (10 points) Let $D=\{z \in \mathbb{C}:|z|<1\}$, and suppose that $f: D \rightarrow \mathbb{C}$ is holomorphic, and injective when restricted to $D \backslash\{0\}$. Prove that f is injective.
