The University of British Columbia
 Department of Mathematics Qualifying Examination-Differential Equations

January 6, 2018

1. (10 points) Find an $n \times n$-matrix P with real entries, such that $P^{T}=P, P^{2}=P$, and whose null space is spanned by the vector $(1, \ldots, 1)^{T}$.
2. (10 points) Let A be an $n \times n$ matrix with complex entries. Suppose that m is a positive integer such that A^{m} is diagonalizable. Prove that A^{m+1} is diagonalizable.
3. (10 points) Suppose that A is a 2×2 matrix with real entries. Suppose that $\operatorname{det} A=1$, and that A does not have a real eigenvalue. Prove that there exists an invertible 2×2-matrix S, with real entries, such that $S^{-1} A S$ is equal to the rotation matrix $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$, for some $\theta \in(0, \pi) \subset \mathbb{R}$.
4. (10 points) Let

$$
A=\left[\begin{array}{ll}
3 & 4 \\
4 & 3
\end{array}\right], \quad \vec{x}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For which values of $\vec{x}(0)$ does the equation $\vec{x}^{\prime}(t)=A \vec{x}(t)$ have $\vec{x}(t) \rightarrow \overrightarrow{0}$ as $t \rightarrow \infty$?
5. (10 points) Consider a real valued function $x=x(t)$ for $t \geq 0$ that satisfies the ODE $x^{\prime}(t)=(x(t))^{1 / 2}$ and the intial condition $x(0)=0$.
(i) Show that $x(t)=0$ for all t satisfies the above ODE and initial condition.
(ii) Find a nonzero solution $x(t)$ to the same ODE and initial condition above.
(iii) Show that there are infinitely many solutions $x(t)$ to the same ODE and initial condition above.
(iv) The ODE $x^{\prime}=g(x, t)$ subject to $x\left(t_{0}\right)=x_{0}$ for given real x_{0}, t_{0} is known to have a unique solution for t near t_{0} for sufficiently well-behaved $g(x, t)$. What is the usual sufficient condition, and why doesn't the above example violate this principle?
6. (10 points) Let $f(x)$ be a differentiable function with $f(0)=f(1)=0$. Consider the wave equation

$$
u_{t t}(x, t)=u_{x x}(x, t)
$$

for $0 \leq x \leq 1$ and $t \geq 0$ subject to the (Dirichlet) boundary conditions $u(0, t)=u(1, t)=0$ and

$$
u(x, 0)=f(x), \quad u_{t}(x, 0)=0
$$

for all $0 \leq x \leq 1$.
(i) Use separation of variables to solve this PDE.
(ii) Which of the terms in the above solution are symmetric about $x=1 / 2$, i.e., which of the solutions $F(x) G(t)$ to the above wave equation have $F(x)=F(1-x)$? Which satisfy $F(x)=-F(1-x)$?
(iii) Say that $f(x)=f(1-x)$. Which terms in the summation in the general separation of variables must be zero, and which are not necessarily zero?

