Algebra Qualifying Exam

1. (8 points) Let p be a prime number, $n \in \mathbb{N}$, with $n \geq 1$ and $M \in \mathcal{M}_{n}(\mathbb{Z})$. Show that

$$
\operatorname{tr}\left(M^{p}\right) \equiv \operatorname{tr}(M) \quad \bmod p .
$$

2. (10 points) Let $A=\left(\begin{array}{ccc}2 & -2 & 1 \\ 2 & -3 & 2 \\ 1 & 2 & 0\end{array}\right) \in \mathcal{M}_{3}(\mathbb{R})$.
a) Is A diagonalizable?
b) Give a basis for the \mathbb{R}-vector space $\mathcal{C}(A):=\left\{B \in \mathcal{M}_{3}(\mathbb{R}), A B=B A\right\}$.
3. (7 points) Let $\vec{u}=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right) \in \mathbb{R}^{n}$. Is $A:=\vec{u} \vec{u}^{T} \in \mathcal{M}_{n}(\mathbb{R})$ diagonalizable?
4. (15 points) Let k be a field and $P \in k[X]$ with degree $n \geq 2$.
a) Show that P is irreducible over k if and only if P has no root in the extensions of k of degree $\leq n / 2$.
b) Show that $X^{4}+1$ has a root in $\mathbb{F}_{p^{2}}$ and that it is reducible over \mathbb{F}_{p} for any prime number p.
5. (15 points) Let p be a prime number and ε a $p^{t h}$ primitive root of 1 in \mathbb{C}. We admit that the minimal polynomial of ε over \mathbb{Q} is $\Phi_{p}=1+X+\ldots+X^{p-1}$.
a) Compute the Euclidean division of Φ_{p} by $X-1$.
b) Let $A=\mathbb{Z}[\varepsilon]$ be the subring of \mathbb{C} generated by ε. Show that A is a free abelian group of rank $p-1$.
c) Show that $\mathbb{Z} \cap(1-\varepsilon) A=p \mathbb{Z}$.
6. (15 points) Let p be prime number and $G=\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$. How many p-Sylow subgroups does G have?
