1. (8 points) Let p be a prime number, $n \in \mathbb{N}$, with $n \geq 1$ and $M \in \mathcal{M}_n(\mathbb{Z})$. Show that

$$\operatorname{tr}(M^p) \equiv \operatorname{tr}(M) \mod p$$

2. (10 points) Let $A = \begin{pmatrix} 2 & -2 & 1 \\ 2 & -3 & 2 \\ 1 & 2 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$ a) Is A diagonalizable?

1.)

b) Give a basis for the \mathbb{R} -vector space $\mathcal{C}(A) := \{B \in \mathcal{M}_3(\mathbb{R}), AB = BA\}.$

3. (7 points) Let
$$\vec{u} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{R}^n$$
. Is $A := \vec{u} \ \vec{u}^T \in \mathcal{M}_n(\mathbb{R})$ diagonalizable?

- 4. (15 points) Let k be a field and $P \in k[X]$ with degree $n \ge 2$. a) Show that P is irreducible over k if and only if P has no root in the extensions of k of degree $\leq n/2$. b) Show that $X^4 + 1$ has a root in \mathbb{F}_{p^2} and that it is reducible over \mathbb{F}_p for any prime number p.
- 5. (15 points) Let p be a prime number and ε a p^{th} primitive root of 1 in \mathbb{C} . We admit that the minimal polynomial of ε over \mathbb{Q} is $\Phi_p = 1 + X + \ldots + X^{p-1}$.
 - a) Compute the Euclidean division of Φ_p by X 1.
 - b) Let $A = \mathbb{Z}[\varepsilon]$ be the subring of \mathbb{C} generated by ε . Show that A is a free abelian group of rank p-1. c) Show that $\mathbb{Z} \cap (1 - \varepsilon)A = p\mathbb{Z}$.
- 6. (15 points) Let p be prime number and $G = \operatorname{GL}_2(\mathbb{F}_p)$. How many p-Sylow subgroups does G have?