The University of British Columbia
 Department of Mathematics
 Qualifying Examination - Analysis

September 4, 2018

Give careful statements of theorems you are using.

I. Real Analysis

Do 3 of the following 4 questions. Indicate clearly which 3 are to be graded.

1. (10 points) Let \vec{C} be a smooth simple closed curve with positive orientation enclosing a region D in the plane. Suppose D has area 5 and centroid (3,2).
(a) Find

$$
\int_{\vec{C}}\left(3 y+x^{2}\right) d x+2 x y d y
$$

(b) If $T(u, v)=(u-v, u+2 v)$, find the area of $D^{\prime}=T(D)=\{T(u, v):(u, v) \in D\}$.

Hint: Recall that the centroid of a region D with area A is the point

$$
(\bar{x}, \bar{y})=\frac{1}{A}\left(\iint_{D} x d x d y, \iint_{D} y d x d y\right)
$$

2. (10 points) Let $\mathcal{P}=\left\{\sum_{n=1}^{N} a_{n} x^{n}: a_{n} \in \mathbb{R}, N \in \mathbb{N}\right\}$, be a set of polynomial functions on $[0,1]$. (Note: there is no constant term!)
(a) State the Weierstrass approximation theorem.
(b) Prove that if $f:[0,1] \rightarrow \mathbb{R}$ is continuous and $f(0)=0$, then f is a uniform limit of a sequence of polynomials in \mathcal{P}. Hint: You may use (a).
(c) Assume $g:[0,1] \rightarrow \mathbb{R}$ is continuous and satisfies $\int_{0}^{1} x^{n} g(x) d x=0$ for all $n \geq 1$. Prove that $g(x)=0$ for all $x \in[0,1]$.
3. (10 points) For a sequence $\left\{x_{n}, n \in \mathbb{N}\right\}$ of real numbers, let S be the set of subsequential limits of $\left\{x_{n}\right\}$.
(a) Prove there is a sequence $\left\{x_{n}\right\}$ for which $S=[0,1]$.
(b) Prove that for any sequence $\left\{x_{n}\right\}$, the set S is closed.
4. (10 points) If $f, g:[-\pi, \pi] \rightarrow \mathbb{C}$ are continuous, denote $\langle f, g\rangle=\int_{\pi}^{\pi} f(x) \overline{g(x)} d x$, and recall that the Fourier coefficients of f are defined by $\hat{f}(m)=\int_{-\pi}^{\pi} f(x) \frac{e^{-i m x}}{\sqrt{2 \pi}} d x$, for $m \in \mathbb{Z}$. Let $\left\{f_{n}\right\}$ be a sequence of \mathbb{C}-valued continuous functions such that $\int_{-\pi}^{\pi}\left|f_{n}(x)\right|^{2} d x \leq 1$ for all $n \in \mathbb{N}$.
(a) Show that there is a subsequence $\left\{f_{n_{k}}\right\}$ such that for each $m \in \mathbb{Z},\left\{\hat{f}_{n_{k}}(m): k \in \mathbb{N}\right\}$ is a convergent sequence of complex numbers.
(b) Show that for a subsequence as in (a) one in fact has convergence of the complex-valued sequence $\left\{\left\langle f_{n_{k}}, g\right\rangle\right\}$ as $k \rightarrow \infty$ for every continuous $g:[-\pi, \pi] \rightarrow \mathbb{C}$.

II. Complex Analysis

Do all 3 questions

5. (10 points) Let $f(z)=\frac{1}{1+z^{5}}$.
(a) If Γ_{R} is the straight line segment in the complex plane from 0 to $R e^{2 \pi i / 5}$, prove that

$$
\int_{\Gamma_{R}} f(z) d z=e^{2 \pi i / 5} \int_{0}^{R} f(x) d x
$$

(b) Evaluate $\int_{0}^{\infty} f(x) d x$.
6. (10 points) (a) Prove that if f is a non-constant entire function, then it's image is dense in \mathbb{C}.
(b) Let g be an entire function so that $g(x)=g(x+1)$ for every real x. Is it necessarily the case that $g(z)=g(z+1)$ for every $z \in \mathbb{C}$? Prove or give a counter-example.
7. (10 points) Suppose D is a bounded open connected subset of \mathbb{C} and f is a continuous \mathbb{C}-valued function on $D \cup \partial D$ which is analytic on D. Suppose for every $z \in \partial D$ we have $|f(z)| \leq 1$. Let $\rho(z)$ be the distance from z to ∂D.
(a) Prove that $\left|f^{\prime}(z)\right| \leq 1 / \rho(z)$ for all $z \in D$.
(b) Does the same always hold if D is the upper half plane?

