The University of British Columbia Department of Mathematics Qualifying Examination — Analysis September 4, 2018

Give careful statements of theorems you are using.

I. Real Analysis

Do 3 of the following 4 questions. Indicate clearly which 3 are to be graded.

(10 points) Let C be a smooth simple closed curve with positive orientation enclosing a region D in the plane. Suppose D has area 5 and centroid (3, 2).
 (a) Find

$$\int_{\vec{C}} (3y + x^2) dx + 2xy dy$$

(b) If T(u, v) = (u - v, u + 2v), find the area of $D' = T(D) = \{T(u, v) : (u, v) \in D\}$.

Hint: Recall that the centroid of a region D with area A is the point

$$(\bar{x}, \bar{y}) = \frac{1}{A} \left(\iint_D x \ dx dy, \iint_D y \ dx dy \right).$$

- 2. (10 points) Let $\mathcal{P} = \left\{ \sum_{n=1}^{N} a_n x^n : a_n \in \mathbb{R}, N \in \mathbb{N} \right\}$, be a set of polynomial functions on [0, 1]. (Note: there is no constant term!)
 - (a) State the Weierstrass approximation theorem.

(b) Prove that if $f:[0,1] \to \mathbb{R}$ is continuous and f(0) = 0, then f is a uniform limit of a sequence of polynomials in \mathcal{P} . Hint: You may use (a).

(c) Assume $g: [0,1] \to \mathbb{R}$ is continuous and satisfies $\int_0^1 x^n g(x) dx = 0$ for all $n \ge 1$. Prove that g(x) = 0 for all $x \in [0,1]$.

- 3. (10 points) For a sequence {x_n, n ∈ N} of real numbers, let S be the set of subsequential limits of {x_n}.
 (a) Prove there is a sequence {x_n} for which S = [0, 1].
 - (b) Prove that for any sequence $\{x_n\}$, the set S is closed.
- 4. (10 points) If $f, g: [-\pi, \pi] \to \mathbb{C}$ are continuous, denote $\langle f, g \rangle = \int_{\pi}^{\pi} f(x) \overline{g(x)} dx$, and recall that the *Fourier coefficients* of f are defined by $\hat{f}(m) = \int_{-\pi}^{\pi} f(x) \frac{e^{-imx}}{\sqrt{2\pi}} dx$, for $m \in \mathbb{Z}$. Let $\{f_n\}$ be a sequence of \mathbb{C} -valued continuous functions such that $\int_{-\pi}^{\pi} |f_n(x)|^2 dx \leq 1$ for all $n \in \mathbb{N}$.

(a) Show that there is a subsequence $\{f_{n_k}\}$ such that for each $m \in \mathbb{Z}$, $\{\hat{f}_{n_k}(m) : k \in \mathbb{N}\}$ is a convergent sequence of complex numbers.

(b) Show that for a subsequence as in (a) one in fact has convergence of the complex-valued sequence $\{\langle f_{n_k}, g \rangle\}$ as $k \to \infty$ for every continuous $g: [-\pi, \pi] \to \mathbb{C}$.

II. Complex Analysis

Do all 3 questions

5. (10 points) Let $f(z) = \frac{1}{1+z^5}$. the complex plane from 0 to $Re^{2\pi i/5}$, prove that (a)

) If
$$\Gamma_R$$
 is the straight line segment in the complex plane from 0 to $Re^{2\pi i/5}$, prove tha

$$\int_{\Gamma_R} f(z) \, dz = e^{2\pi i/5} \int_0^R f(x) dx.$$

(b) Evaluate $\int_0^\infty f(x) \, dx$.

- 6. (10 points) (a) Prove that if f is a non-constant entire function, then it's image is dense in \mathbb{C} . (b) Let g be an entire function so that g(x) = g(x+1) for every real x. Is it necessarily the case that g(z) = g(z+1) for every $z \in \mathbb{C}$? Prove or give a counter-example.
- 7. (10 points) Suppose D is a bounded open connected subset of \mathbb{C} and f is a continuous \mathbb{C} -valued function on $D \cup \partial D$ which is analytic on D. Suppose for every $z \in \partial D$ we have $|f(z)| \leq 1$. Let $\rho(z)$ be the distance from z to ∂D .
 - (a) Prove that $|f'(z)| \leq 1/\rho(z)$ for all $z \in D$.
 - (b) Does the same always hold if D is the upper half plane?