The University of British Columbia
 Department of Mathematics
 Qualifying Examination-Analysis
 January 5, 2019

Real analysis

1. (10 points) 1. (a) Suppose $f(x, y)$ is a continuously differentiable function on \mathbb{R}^{2}. It is known that the directional derivatives satisfy $D_{\mathbf{u}} f(0,0)<\frac{\partial f}{\partial x}(0,0)=2$ for all unit vectors $\mathbf{u} \neq \mathbf{i}$. Find $\frac{\partial f}{\partial y}(0,0)$.
(b) Let \mathcal{C} be the boundary of the parallelogram in the $x-y$ plane with vertices $(0,0),(2,0),\left(3, y_{0}\right)$ and $\left(1, y_{0}\right)$, where $y_{0}>0$ is unknown. \mathcal{C} is given the counterclockwise orientation. Suppose $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}=6$, where $\mathbf{F}=\left(-y+e^{x^{2}}+e^{y^{2}}, 2 x+2 x y e^{y^{2}}\right)$. Find y_{0}.
2. (10 points) Are the following true or false? If true, give a proof; if false, provide a counterexample.
(a) If $f, g:(0,1) \rightarrow \mathbb{R}$ are uniformly continuous on $(0,1)$, then so is $h(x)=f(x) g(x)$.
(b) If $f, g:(0,1) \rightarrow(0, \infty)$ are uniformly continuous and positive on $(0,1)$, then so is $h(x)=f(x) / g(x)$.
(c) If f is a continuously differentiable function on $[0,1]$, then there is a sequence of polynomials $\left\{P_{n}: n \in \mathbb{N}\right\}$ such P_{n} converges uniformly to f, and P_{n}^{\prime} converges uniformly to f^{\prime}.
3. (10 points) Let $K(x, y)=\sin (2 \pi(x-y))^{2}$.
(a) If $f:[0,1] \rightarrow \mathbb{R}$ is continuous, prove that $F(x)=\int_{0}^{1} K(x, y) f(y) d y$ defines a continuous function F on $[0,1]$.
(b) Prove that there is a unique continuous function $f:[0,1] \rightarrow \mathbb{R}$ such that

$$
f(x)=x+\int_{0}^{1} K(x, y) f(y) d y \quad \text { for all } x \in[0,1]
$$

Complex analysis

4. (10 points) Let

$$
f(z)=\left(z^{2}+1\right)^{2}, \quad g(z)=\left(z^{2}+2 z-3\right)^{3}, \quad h(z)=\frac{f(z)}{g(z)}
$$

and let \mathcal{C} be the circle $|z|=2$ with the counter-clockwise orientation. Find $\oint_{\mathcal{C}} \frac{\left.h^{\prime} z\right)}{h(z)}+f(z) g(z) d z$.
5. (10 points) Use complex integration to compute the following integrals:
(a) $I_{1}=\int_{-\infty}^{\infty} \frac{1}{1+x^{4}} d x$
(b) $\quad I_{2}=\int_{-\infty}^{\infty} \frac{\cos (x)}{1+x^{4}} d x$
6. (10 points) (a) Find a harmonic function g on the upper half-plane $U=\{z: \operatorname{Im}(z)>0\}$ which extends continuously to $\bar{U} \backslash\{0\}$ and satisfies the boundary conditions $g=0$ on $(0, \infty)$ and $g=1$ on $(-\infty, 0)$.
(b) If D is the half disk $\{|z|<1: \operatorname{Im}(z)>0\}$, find a conformal map f from \bar{D} to $\bar{U} \cup\{\infty\}$ such that $f(1)=\infty$ and $f(-1)=0$.
(c) Find a solution, h, to $\Delta h=0$ on D which extends continuously to $\bar{D} \backslash\{-1,1\}$ and satisfies $h=0$ on $(-1,1)$ and $h=1$ on the semicircle $\{|z|=1, \operatorname{Im}(z)>0\}$. (You may express your answer in terms of the solutions of previous parts.)

