The University of British Columbia **Department of Mathematics** Qualifying Examination—Analysis January 5, 2019

Real analysis

1. (10 points) 1. (a) Suppose f(x, y) is a continuously differentiable function on \mathbb{R}^2 . It is known that the directional derivatives satisfy $D_{\mathbf{u}}f(0,0) < \frac{\partial f}{\partial x}(0,0) = 2$ for all unit vectors $\mathbf{u} \neq \mathbf{i}$. Find $\frac{\partial f}{\partial u}(0,0)$.

(b) Let C be the boundary of the parallelogram in the x - y plane with vertices (0, 0), (2, 0), $(3, y_0)$ and $(1, y_0)$, where $y_0 > 0$ is unknown. C is given the counterclockwise orientation. Suppose $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = 6$, where $\mathbf{F} = (-y + e^{x^2} + e^{y^2}, 2x + 2xye^{y^2})$. Find y_0 .

- 2. (10 points) Are the following true or false? If true, give a proof; if false, provide a counterexample.
 - (a) If $f, g: (0,1) \to \mathbb{R}$ are uniformly continuous on (0,1), then so is h(x) = f(x)g(x).
 - (b) If $f, g: (0,1) \to (0,\infty)$ are uniformly continuous and positive on (0,1), then so is h(x) = f(x)/g(x).
 - (c) If f is a continuously differentiable function on [0,1], then there is a sequence of polynomials $\{P_n : n \in \mathbb{N}\}\$ such P_n converges uniformly to f, and P'_n converges uniformly to f'.
- 3. (10 points) Let $K(x, y) = \sin(2\pi(x y))^2$.
 - (a) If $f:[0,1] \to \mathbb{R}$ is continuous, prove that $F(x) = \int_0^1 K(x,y)f(y)\,dy$ defines a continuous function F on [0, 1].
 - (b) Prove that there is a unique continuous function $f:[0,1] \to \mathbb{R}$ such that

$$f(x) = x + \int_0^1 K(x, y) f(y) \, dy$$
 for all $x \in [0, 1]$.

Complex analysis

4. (10 points) Let

$$f(z) = (z^2 + 1)^2,$$
 $g(z) = (z^2 + 2z - 3)^3,$ $h(z) = \frac{f(z)}{g(z)},$

and let \mathcal{C} be the circle |z| = 2 with the counter-clockwise orientation. Find $\oint_{\mathcal{C}} \frac{h'z}{h(z)} + f(z)g(z)dz$.

5. (10 points) Use complex integration to compute the following integrals:

(a)
$$I_1 = \int_{-\infty}^{\infty} \frac{1}{1+x^4} dx$$
 (b) $I_2 = \int_{-\infty}^{\infty} \frac{\cos(x)}{1+x^4} dx$

- 6. (10 points) (a) Find a harmonic function g on the upper half-plane $U = \{z : Im(z) > 0\}$ which extends continuously to $\overline{U} \setminus \{0\}$ and satisfies the boundary conditions q = 0 on $(0, \infty)$ and q = 1 on $(-\infty, 0)$.
 - (b) If D is the half disk $\{|z| < 1 : Im(z) > 0\}$, find a conformal map f from \overline{D} to $\overline{U} \cup \{\infty\}$ such that $f(1) = \infty$ and f(-1) = 0.
 - (c) Find a solution, h, to $\Delta h = 0$ on D which extends continuously to $\overline{D} \setminus \{-1, 1\}$ and satisfies h = 0on (-1,1) and h=1 on the semicircle $\{|z|=1, Im(z)>0\}$. (You may express your answer in terms of the solutions of previous parts.)