The University of British Columbia
 Department of Mathematics Qualifying Examination-Algebra
 September 2019

1. (15 points) (a) Work over the complex numbers. Let $A=\left(\begin{array}{ll}3 & -2 \\ 8 & -5\end{array}\right)$. Find the eigenvalues and state their geometric and algebraic multiplicities.
(b) Is the matrix above diagonalizable? Explain your answer.

In either case, write down a similarity transform putting A in Jordan normal form.
(c) Let B be a real matrix with characteristic polynomial $(x+2)^{2}(x-3)^{2}$. What are the possible Jordan normal forms of B ? To avoid repetition, give your answers with eigenvalues sorted from smallest-in-magnitude to largest-in-magnitude, and if two Jordan forms J_{1} and J_{2} happen to be similar matrices, give only one. You may omit 0 -entries if you wish.
2. (15 points) (a) Let P_{n} be the \mathbb{R}-vector space of polynomials of degree at most n with real coefficients. Let $S=\left\{p_{1}, \ldots, p_{n+1}\right\} \subseteq P_{n}$ be a set of $n+1$ polynomials, satisfying $p_{i}(0)=0$ for all i. Either prove S is linearly dependent, or give an example to show S may be linearly independent.
(b) Let \vec{u} and \vec{v} be elements of a real inner-product space. Suppose that

$$
|\vec{u}+\vec{v}|=|\vec{u}|+|\vec{v}| .
$$

Show that \vec{u} and \vec{v} are linearly dependent. Name, or otherwise state clearly, any theorems that you use.
3. (15 points) Let k be a field. Consider the 2×2 matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

with entries in k.
(a) Let $z \in k$ satisfy the sector equation: $b z^{2}+(a-d) z-c=0$. Show that $\vec{v}=\binom{1}{z}$ is an eigenvector of A and determine the corresponding eigenvalue.
(b) Now consider the quotient ring $R=k[\epsilon] /\left(\epsilon^{2}\right)$. All elements of R may be written uniquely in the form $x+\epsilon y$ where $x, y \in k$. Determine all solutions $z \in R$ to the equation

$$
\epsilon z^{2}-z-1=0 .
$$

(c) Let the ring R be as in the previous part. Find a vector $\binom{r}{s}$ of elements in R such that the ideal generated by $\{r, s\}$ is all of R and such that

$$
\left(\begin{array}{ll}
1 & \epsilon \\
1 & 2
\end{array}\right)\binom{r}{s}=\lambda\binom{r}{s}
$$

for some $\lambda \in R$. Hint: try solving an equation like the sector equation from part (a).
4. (15 points) Let R be a commutative ring and let $f: R \rightarrow R$ be a surjective ring homomorphism.
(a) Let f^{n} denote the composite of f with itself n times. Suppose there exists some integer $m \geq 1$ such that $\operatorname{ker}\left(f^{m+1}\right) \subset \operatorname{ker}\left(f^{m}\right)$. Prove that f is injective.
(b) Give an example of a ring R and a homomorphism $f: R \rightarrow R$ that is surjective but not injective (you do not have to provide proof).
5. (15 points) Let p be a prime number. Let k be a field of characteristic p and \bar{k} be an algebraic closure of k. Let $c \in k$ be an element. Consider the polynomial

$$
f(x)=x^{p}-x+c .
$$

a. Suppose $\alpha \in \bar{k}$ is a root $f(\alpha)=0$. Determine $f(\alpha+1)$.
b. Prove that if f does not split over k, then f is irreducible over k.
6. (15 points) Let $D=D_{7}$ denote the dihedral group of order 14 . This group has a presentation $D=$ $\left\{a, b \mid a^{2}=b^{7}=a b a b=e\right\}$.
(a) Let $i \in\{0, \ldots, 6\}$. Determine the order of the element $a b^{i}$ in D, in terms of i.
(b) Write down all elements of order 7 in D.
(c) Consider the set G of all group automorphisms $\phi: D \rightarrow D$. The set G forms a group under composition. What is the order of G ?
(d) Describe a homomorphism $\phi: D \rightarrow D$ such that $\phi \neq \mathrm{id}_{D}$ but such that $\phi \circ \phi \circ \phi=\mathrm{id}_{D}$.

