The University of British Columbia
 Department of Mathematics Qualifying Examination-Differential Equations

September 2019

1. (15 points) Consider the following system of nonlinear ODEs for $x(t)$ and $y(t)$ in the region $-\infty<x<$ $\infty,-\infty<y<\infty$:

$$
x^{\prime}=x[4 x(1-x)-y], \quad y^{\prime}=y(4 x-3)
$$

(a) Find all fixed points, determine their linear stability properties, and classify the fixed points.
(b) Use the eigen-analysis of the linearized system in (a) to help sketch a local phase portrait near each fixed point.
(c) Sketch the global phase portrait. Explain any discrepancy between the portraits of the linearized and nonlinear systems. (Hint: the nullclines will be useful here).
2. (15 points) Consider the differential operator L, defined as follows for functions $y(x)$ with domain $x>0$:

$$
L[y]=x^{2} y^{\prime \prime}-x y^{\prime}-3 y
$$

(a) Find the general solution for $L[y]=0$.
(b) Express the ODE $L[y]=0$ in matrix form as

$$
\frac{d \vec{y}}{d x}=A(x) \vec{y}
$$

Find a fundamental matrix Y for this problem.
(c) Use the results from part (b) to solve the initial value problem

$$
L[y]=0, \quad \text { with } \quad y(1)=0, \quad y^{\prime}(1)=-1
$$

(d) Find the general solution for the inhomogeneous problem $L[y]=f$ for the choice $f=x^{3}$.
3. (15 points) Radially symmetric diffusion in an insulated sphere of radius a, and with constant bulk decay, is modeled by the following parabolic PDE for $u=u(r, t)$:

$$
\begin{align*}
u_{t} & =D\left[u_{r r}+\frac{2}{r} u_{r}\right]-u, \quad 0<r<a, t>0 \tag{1a}\\
u_{r}(a, t) & =0 ; \quad u, u_{r} \text { bounded as } r \rightarrow 0 \tag{1b}\\
u(r, 0) & =f(r) . \tag{1c}
\end{align*}
$$

Here $D>0$ is the constant diffusivity.
(a) Define $M(t)$ by $M(t)=\int_{0}^{a} r^{2} u(r, t) d r$. Derive an ODE for $M(t)$ and solve it to determine $M(t)$ in terms of an integral of $f(r)$.
(b) Develop, in as explicit a form as you can, an eigenfunction expansion representation for the solution $u(r, t)$ to (1). Verify from your representation the result obtained in (a) above. (Hint: In determining the eigenvalues and eigenfunctions of the underlying Sturm-Liouville eigenvalue problem for $\Phi(r)$, the change of dependent variable $\Phi(r)=\Psi(r) / r$ is particularly useful.)
4. (15 points) (a) Work over the complex numbers. Let $A=\left(\begin{array}{ll}3 & -2 \\ 8 & -5\end{array}\right)$. Find the eigenvalues and state their geometric and algebraic multiplicities.
(b) Is the matrix above diagonalizable? Explain your answer.

In either case, write down a similarity transform putting A in Jordan normal form.
(c) Let B be a real matrix with characteristic polynomial $(x+2)^{2}(x-3)^{2}$. What are the possible Jordan normal forms of B ? To avoid repetition, give your answers with eigenvalues sorted from smallest-in-magnitude to largest-in-magnitude, and if two Jordan forms J_{1} and J_{2} happen to be similar matrices, give only one. You may omit 0 -entries if you wish.
5. (15 points) (a) Let P_{n} be the vector space of polynomials of degree at most n with real coefficients. Let $S=\left\{p_{1}, \ldots, p_{n+1}\right\} \subseteq P_{n}$ be a set of $n+1$ polynomials, satisfying $p_{i}(0)=0$ for all i. Either prove S is linearly dependent, or give an example to show S may be linearly independent.
(b) Let \vec{u} and \vec{v} be elements of an inner product space. Suppose that

$$
|\vec{u}+\vec{v}|=|\vec{u}|+|\vec{v}| .
$$

Show that \vec{u} and \vec{v} are linearly dependent. Name, or otherwise state clearly, any theorems that you use.
6. (15 points) Consider a real 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
(a) Let m be a root (real or complex) of the "sector equation" $b m^{2}+(a-d) m-c=0$. Show that $\vec{v}=\binom{1}{m}$ is an eigenvector of A and determine the corresponding eigenvalue.
(b) What practical advantage might this method offer over the "usual" characteristic-equation approach to finding eigenvalues and eigenvectors?
(c) Consider the real matrix $B(\varepsilon)=\left(\begin{array}{ll}1 & \varepsilon \\ 1 & 2\end{array}\right)$, where ε is a small parameter.
i. Find the roots of the sector equation from above.
ii. Describe carefully what happens to each of the roots as $\varepsilon \rightarrow 0$. (Hint: the Taylor expansion $\sqrt{1+\tau}=1+\frac{1}{2} \tau+O\left(\tau^{2}\right)$ for small τ may be useful here.)
iii. Nonetheless, show that all roots lead to finite eigenpairs (λ, \vec{v}) in the limit as $\varepsilon \rightarrow 0$. Hint: recall any scaling of the eigenvector is also an eigenvector.

