The University of British Columbia
 Department of Mathematics Qualifying Examination-Algebra
 January 11, 2020

This exam consists of problems 1 to 3 on Linear Algebra and problems 4 to 6 on Abstract Algebra. The two subjects will be weighted equally.

1. (15 points) Consider the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
3 & 4
\end{array}\right]
$$

(a) (3 points) What is the rank of A ?
(b) (4 points) Find a basis for the nullspace of A^{T} (the transpose of A).
(c) (6 points) Determine all values of w for which the system

$$
\begin{align*}
x+y & =-1 \tag{1}\\
x+2 y & =w \tag{2}\\
3 x+4 y & =0 \tag{3}
\end{align*}
$$

has a solution and find one.
(d) (2 points) Is the solution in (c) above unique?
2. (15 points) Consider the sequence $\left\{\mathbf{v}^{n}\right\}_{n=0}^{\infty}$ of vectors in \mathbb{R}^{2} defined by given \mathbf{v}^{0} and the recurrence relationship

$$
A \mathbf{v}^{n+1}=B \mathbf{v}^{n}
$$

where

$$
A=\left[\begin{array}{cc}
1 & -k \\
k & 1
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & k \\
-k & 1
\end{array}\right]
$$

and $k>0$ is a given parameter.
(a) (8 points) Rewite the recurrence relationship in the form

$$
\mathbf{v}^{n+1}=C \mathbf{v}^{n}
$$

with C a matrix.
(b) (7 points) Show that $\left\|\mathbf{v}^{n}\right\|=\left\|\mathbf{v}^{0}\right\|$ for all n where $\|\cdot\|$ is the standard Euclidean norm.
3. (15 points) (a) (7 points) Prove that

$$
e^{A}:=I+A+A^{2} / 2!+\cdots+A^{m} / m!+\ldots
$$

converges at every index for any square matrix. Here, I is the identity matrix.
(b) (4 points) Find e^{A} when

$$
A=\left[\begin{array}{ll}
2 & 1 \\
2 & 3
\end{array}\right]
$$

(c) (4 points) Find e^{A} when

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
$$

For problems 4 to 6 , complete parts (a)-(c) of each problem, and complete part (d) of one problem of your choice. (For example, if you choose to complete part (d) of problem 4, then problem 4 will be worth 19 points and problems 5 and 6 will be worth 13 points each, for a total of 45 points.) You are free to attempt one part (d) below or more than one; the part (d) for which you receive the highest score will be the one that is counted.
4. (13 or * 19 points) In this question, the rings R and S are always commutative and have a multiplicative identity 1 satisfying $1 \neq 0$. Prove or disprove each of the following statements involving direct products of rings:
(a) (4 points) If R^{*} denotes the set of invertible elements in R, then $(R \times S)^{*}=R^{*} \times S^{*}$.
(b) (4 points) If R and S are fields, then $R \times S$ is a field.
(c) (5 points) If K is an ideal of $R \times S$, then there exist an ideal I of R and an ideal J of S such that $K=I \times J$.
(d) $\left(* 6\right.$ points) If $e \in R$ is an element satisfying $e^{2}=e$, then $R \cong R /\langle e\rangle \times R /\langle 1-e\rangle$.
5. (13 or * 19 points) It is known that any nontrivial finite abelian group G has an invariant factor decomposition as a direct sum of finite cyclic groups, of the form

$$
G \cong \mathbb{Z} / d_{1} \mathbb{Z} \oplus \mathbb{Z} / d_{2} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / d_{\ell} \mathbb{Z}
$$

where $\ell \geq 1$ and $d_{1}, \ldots, d_{\ell} \geq 2$ are integers such that d_{j} divides d_{j+1} for each $1 \leq j \leq \ell-1$.
(a) (4 points) Let \mathbb{F}_{q} denote the finite field with q elements, and let R^{*} denote the set of invertible elements in the ring R. Then $H=\left(\mathbb{F}_{64} \times \mathbb{F}_{27} \times \mathbb{F}_{25} \times \mathbb{F}_{49}\right)^{*}$ is a finite abelian group. Find the invariant factor decomposition of H.
(b) (4 points) Recall that the exponent of an additive group G is the smallest positive integer n such that $n g=0$ for each element g of G. In the notation (\dagger), prove that the largest invariant factor d_{ℓ} is equal to the exponent of the group G.
(c) (5 points) Prove that the invariant factor decomposition of a finite abelian group is unique. (You don't have to prove that it exists.)
(d) $\left(* 6\right.$ points) Let m_{1}, \ldots, m_{k} be any positive integers, and set $G=\mathbb{Z} / m_{1} \mathbb{Z} \oplus \mathbb{Z} / m_{2} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / m_{k} \mathbb{Z}$. Then G has an invariant factor decomposition (\dagger) of length ℓ. Prove that $\ell \leq k$.
6. (13 or $* 19$ points) Define the fields $K=\mathbb{Q}(\sqrt[3]{2})$ and $L=\mathbb{Q}\left(e^{2 \pi i / 3}\right)$, and let F be the splitting field over \mathbb{Q} of the polynomial $\left(x^{3}-2\right)\left(x^{3}-3\right)$.
(a) (7 points) Among the four fields F, K, L, \mathbb{Q}, determine (with justification) all pairs of fields where one is a field extension of another.
(b) (3 points) For the smallest field extension from part (a), either determine its Galois group or explain why it is not a Galois extension.
(c) (3 points) Do the same for the second-smallest field extension from part (a).
(d) $(* 6$ points) Do the same for the remainder of the field extensions from part (a).

