The University of British Columbia
 Department of Mathematics
 Qualifying Examination-Analysis
 January 5, 2019

Real analysis

1. (10 points) Suppose that $\left\{f_{n}\right\}$ is a sequence of continuous functions on $[0,1]$ that converges pointwise to a continuous function f on $[0,1]$. Does it follow that $\left\{f_{n}\right\}$ converges uniformly? If so, give a proof. If not, provide a counter-example.
2. (10 points) Let f and g be functions that are absolutely continuous on $[0,1]$ and positive for each $x \in[0,1]$. Prove that the quotient f / g is absolutely continuous on $[0,1]$.
3. (10 points) Let $f:[0,1]^{n} \rightarrow \mathbb{R}$ be a smooth function that is supported on the unit cube in \mathbb{R}^{n} and vanishes on the boundary of the cube. Prove that

$$
\int_{[0,1]^{n}}|f(x)|^{2} d x \leq \int_{[0,1]^{n}}|\nabla f(x)|^{2} d x .
$$

Note: this is an example of a Poincaré inequality, but it is not sufficient to merely cite this fact; you need to prove it.

Complex analysis

4. Let $f(z)=\left(\frac{\sin (2 z)}{z^{3}}-\frac{2}{z^{2}}\right) \cdot\left(\frac{z+\pi / 4}{z-\pi / 4}\right)$.
(a) Find and classify all singularities of f.
(b) Evaluate $I=\int_{\Gamma} f(z) d z$ where Γ is the positively oriented rectangular loop with vertices at $v_{1}=i$, $v_{2}=-1$, and $v_{3}=-i$, and $v_{4}=1$.
5. Let $f: \mathbb{C} \mapsto \mathbb{C}$ be analytic inside and on a circle C_{R} of radius $R>0$ centered about z_{0}.
(a) Show that if $|f(z)| \leq M$ for all z on C_{R}, then

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M}{R^{n}} .
$$

(b) Use part (a) to prove Liouville's theorem: "The only bounded entire functions are the constant functions."
(c) Let f be entire and suppose that $f^{(4)}$ is bounded in the whole complex plane. Prove that f must be a polynomial of degree at most 4 .
6. Evaluate the following integrals using contour integration.
(a)

$$
I=\int_{-\infty}^{\infty} \frac{1}{\left(1+x^{2}\right)^{2}} d x
$$

(b)

$$
J=\int_{-\infty}^{\infty} \frac{x^{2}+1}{x^{4}+1}
$$

(c)

$$
K=\int_{0}^{\infty} \frac{\cos (x)}{x^{2}+4} d x
$$

