The University of British Columbia
 Department of Mathematics Qualifying Examination-Differential Equations

January 2020

1. (15 points) Consider the following problem for the two-component vector $\mathbf{y}(t)$ satisfying the linear system of ODEs

$$
\mathbf{y}^{\prime \prime}+\left(\begin{array}{cc}
5 & -1 \\
2 & 2
\end{array}\right) \mathbf{y}=F \cos (\omega t)\binom{1}{1}
$$

Here $F>0$ and $\omega>0$ are constants.
(a) Determine in as explicit a form as you can the general solution to the homogeneous problem where $F=0$.
(b) Calculate a particular solution for $F>0$ and for any ω with $\omega \neq \sqrt{3}$ and $\omega \neq 2$.
(c) Calculate a particular solution for $F>0$ and $\omega=2$. (Hint: this is a resonance case).
(d) When $\omega=3$ and $F=1$, find an explicit solution to the initial value problem with initial condition

$$
\mathbf{y}(0)=\binom{1}{1}, \quad \mathbf{y}^{\prime}(0)=\binom{0}{0} .
$$

2. (15 points) Let c_{0} and c be positive constants with $0<c_{0}<c$. Calculate the solution $u(x, t)$ to each of the following two PDE wave problems:
(a) The one-way wave equation:

$$
\begin{array}{r}
u_{t}+c u_{x}=0, \quad c_{0} t \leq x<\infty, \quad t \geq 0 \\
u(x, 0)=f(x), \quad u\left(c_{0} t, t\right)=h(t)
\end{array}
$$

(b) The wave equation:

$$
\begin{array}{rlrl}
u_{t t} & =c^{2} u_{x x}, & \quad c_{0} t \leq x<\infty, & \\
t \geq 0 \\
u(x, 0) & =f(x), & u_{t}(x, 0)=0, & \\
u\left(c_{0} t, t\right)=h(t)
\end{array}
$$

(c) Briefly explain (three clear sentences is sufficient here) the qualitative differences between the solutions to these two problems.
3. (15 points) Let $u(r, \theta)$ satisfy Laplace's equation in polar coordinates inside the disk $0 \leq r \leq R$ with $0 \leq \theta \leq 2 \pi$, satisfying

$$
\begin{array}{r}
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0, \quad 0 \leq r \leq R, \quad 0 \leq \theta \leq 2 \pi \\
u(R, \theta)=f(\theta) ; \quad u \text { bounded as } r \rightarrow 0 ; \quad u, \quad u_{\theta}, \quad 2 \pi \text { periodic in } \theta
\end{array}
$$

(a) Determine an explicit solution for u when $f(\theta)=2 \cos ^{2}(2 \theta)$.
(b) For an arbitrary smooth 2π periodic $f(\theta)$ derive an infinite series representation for $u(r, \theta)$ in terms of the angular eigenfunctions.
(c) Sum the infinite series in (ii) to obtain the well-known Poisson's integral formula for $u(r, \theta)$. (Hint: you will need to calculate an infinite sum of the form $\sum_{n=1}^{\infty} \rho^{n} \cos (n \theta)$ for $0<\rho<1$.)
4. (15 points) Consider the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 2 \\
3 & 4
\end{array}\right]
$$

(a) (3 points) What is the rank of A ?
(b) (4 points) Find a basis for the nullspace of A^{T} (the transpose of A).
(c) (6 points) Determine all values of w for which the system

$$
\begin{align*}
x+y & =-1 \tag{10}\\
x+2 y & =w \tag{11}\\
3 x+4 y & =0 \tag{12}
\end{align*}
$$

has a solution and find one.
(d) (2 points) Is the solution in (c) above unique?
5. (15 points) Consider the sequence $\left\{\mathbf{v}^{n}\right\}_{n=0}^{\infty}$ of vectors in \mathbb{R}^{2} defined by given \mathbf{v}^{0} and the recurrence relationship

$$
A \mathbf{v}^{n+1}=B \mathbf{v}^{n}
$$

where

$$
A=\left[\begin{array}{cc}
1 & -k \\
k & 1
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & k \\
-k & 1
\end{array}\right]
$$

and $k>0$ is a given parameter.
(a) (8 points) Rewite the recurrence relationship in the form

$$
\mathbf{v}^{n+1}=C \mathbf{v}^{n}
$$

with C a matrix.
(b) (7 points) Show that $\left\|\mathbf{v}^{n}\right\|=\left\|\mathbf{v}^{0}\right\|$ for all n where $\|\cdot\|$ is the standard Euclidean norm.
6. (15 points) (a) (7 points) Prove that

$$
e^{A}:=I+A+A^{2} / 2!+\cdots+A^{m} / m!+\ldots
$$

converges at every index for any square matrix. Here, I is the identity matrix.
(b) (4 points) Find e^{A} when

$$
A=\left[\begin{array}{ll}
2 & 1 \\
2 & 3
\end{array}\right]
$$

(c) (4 points) Find e^{A} when

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
$$

