The University of British Columbia Department of Mathematics Qualifying Examination—Algebra

September 2020

1. (15 points) Consider the matrix

	1	1	0	0	0	0	
A =	0	1	0	0	0	0	
	0	0	0	0	0	0	
	0	0	0	1	1	1	•
	0	0	0	1	0	1	
	0	0	0 0 0 0 0 0	3	1	$\begin{bmatrix} 1\\3 \end{bmatrix}$	

- (a) (2 points) Calculate the trace of A.
- (b) (2 points) Calculate the determinant of A.
- (c) (4 points) What is the nullity of A (the dimension of the null space)?
- (d) (2 points) What is the rank of A?
- (e) (5 points) Write a basis for the nullspace of A.
- 2. (15 points) Consider the problem of finding polynomials $B_n(x)$ with real coefficients such that

$$\int_{x}^{x+1} B_n(t) \, dt = x^n$$

- (a) (4 points) Find a polynomial B_1 with this property.
- (b) (4 points) Find a polynomial B_2 with this property.
- (c) (7 points) Show that there is a unique polynomial $B_n(x)$ with this property for all n.
- 3. (15 points) Let V be a finite dimensional vector space over the real numbers. Let (\mathbf{x}, \mathbf{y}) be an inner product for V and let L be a linear functional on V $(L: V \to \mathbb{R})$.
 - (a) (5 points) Write the properties that define a linear functional in this setting.
 - (b) (10 points) Show that there exists a unique vector \mathbf{y} in V such that

$$L(\mathbf{x}) = (\mathbf{x}, \mathbf{y})$$

for all \mathbf{x} .

- 4. (15 points) In parts (a) and (b) of this question, Z(G) denotes the center of the group G, that is, the set of elements that commute with every element of G.
 - (a) (4 points) Let G be a group such that G/Z(G) is cyclic. Prove that there exists $x \in G$ such that every element of G can be written as $x^n z$ for some $n \in \mathbb{Z}$ and some $z \in Z(G)$.
 - (b) (3 points) If G is a group such that G/Z(G) is cyclic, prove that G is abelian.
 - (c) (4 points) Let G be a finite group, and let p be a prime that divides the order of G. Let H be a subgroup of G of index p. Define $K = \{g \in G : (gx)H = xH \text{ for all } x \in G\}$. Prove that K is a normal subgroup of G, and prove that the order of G/K divides p!. (Hint: there is a relevant group action of G on the set of cosets $\{xH : x \in G\}$ given by $xH \mapsto (gx)H$.)
 - (d) (4 points) Let G be a finite group, and let p be the *smallest* prime dividing the order of G. If H is a subgroup of G of index p, prove that H is a normal subgroup of G.

- 5. (15 points) In this question, R is a commutative ring with 1. Recall that an element a of R is nilpotent if there exists a positive integer n such that $a^n = 0$.
 - (a) (5 points) Let J be the set of nilpotent elements of R. Prove that J is an ideal of R that is contained in every prime ideal of R.
 - (b) (5 points) Given $y, z \in R$, prove that y + zT is a unit in R[T] if and only if y is a unit in R and z is nilpotent.
 - (c) (5 points) Suppose that R is finite. Prove that every nonzero element of R is either a unit or a zero divisor.
- 6. (15 points) For parts (a) and (b) of this question, let p be a prime, let \mathbb{F}_p be the field with p elements, and fix $a \in \mathbb{F}_p \setminus \{0\}$.
 - (a) (3 points) Consider the polynomial $f(T) = T^p T + a \in \mathbb{F}_p[T]$. Prove that if α is a root of f(T) in some extension of \mathbb{F}_p , then so is $\alpha + 1$.
 - (b) (4 points) What is the Galois group of the splitting field of the polynomial $f(T^p) = T^{p^2} T^p + a$ over \mathbb{F}_p ?
 - (c) (4 points) Find, with proof, the Galois group of the extension $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}$.
 - (d) (4 points) Prove that the set $\{\sqrt{2}, \sqrt{3}, \sqrt{6}\}$ is linearly independent over \mathbb{Q} .