The University of British Columbia
 Department of Mathematics Qualifying Examination-Algebra
 September 2020

1. (15 points) Consider the matrix

$$
A=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 3 & 1 & 3
\end{array}\right]
$$

(a) (2 points) Calculate the trace of A.
(b) (2 points) Calculate the determinant of A.
(c) (4 points) What is the nullity of A (the dimension of the null space)?
(d) (2 points) What is the rank of A ?
(e) (5 points) Write a basis for the nullspace of A.
2. (15 points) Consider the problem of finding polynomials $B_{n}(x)$ with real coefficients such that

$$
\int_{x}^{x+1} B_{n}(t) d t=x^{n}
$$

(a) (4 points) Find a polynomial B_{1} with this property.
(b) (4 points) Find a polynomial B_{2} with this property.
(c) (7 points) Show that there is a unique polynomial $B_{n}(x)$ with this property for all n.
3. (15 points) Let V be a finite dimensional vector space over the real numbers. Let (\mathbf{x}, \mathbf{y}) be an inner product for V and let L be a linear functional on $V(L: V \rightarrow \mathbb{R})$.
(a) (5 points) Write the properties that define a linear functional in this setting.
(b) (10 points) Show that there exists a unique vector \mathbf{y} in V such that

$$
L(\mathbf{x})=(\mathbf{x}, \mathbf{y})
$$

for all \mathbf{x}.
4. (15 points) In parts (a) and (b) of this question, $Z(G)$ denotes the center of the group G, that is, the set of elements that commute with every element of G.
(a) (4 points) Let G be a group such that $G / Z(G)$ is cyclic. Prove that there exists $x \in G$ such that every element of G can be written as $x^{n} z$ for some $n \in \mathbb{Z}$ and some $z \in Z(G)$.
(b) (3 points) If G is a group such that $G / Z(G)$ is cyclic, prove that G is abelian.
(c) (4 points) Let G be a finite group, and let p be a prime that divides the order of G. Let H be a subgroup of G of index p. Define $K=\{g \in G:(g x) H=x H$ for all $x \in G\}$. Prove that K is a normal subgroup of G, and prove that the order of G / K divides $p!$. (Hint: there is a relevant group action of G on the set of cosets $\{x H: x \in G\}$ given by $x H \mapsto(g x) H$.
(d) (4 points) Let G be a finite group, and let p be the smallest prime dividing the order of G. If H is a subgroup of G of index p, prove that H is a normal subgroup of G.
5. (15 points) In this question, R is a commutative ring with 1 . Recall that an element a of R is nilpotent if there exists a positive integer n such that $a^{n}=0$.
(a) (5 points) Let J be the set of nilpotent elements of R. Prove that J is an ideal of R that is contained in every prime ideal of R.
(b) (5 points) Given $y, z \in R$, prove that $y+z T$ is a unit in $R[T]$ if and only if y is a unit in R and z is nilpotent.
(c) (5 points) Suppose that R is finite. Prove that every nonzero element of R is either a unit or a zero divisor.
6. (15 points) For parts (a) and (b) of this question, let p be a prime, let \mathbb{F}_{p} be the field with p elements, and fix $a \in \mathbb{F}_{p} \backslash\{0\}$.
(a) (3 points) Consider the polynomial $f(T)=T^{p}-T+a \in \mathbb{F}_{p}[T]$. Prove that if α is a root of $f(T)$ in some extension of \mathbb{F}_{p}, then so is $\alpha+1$.
(b) (4 points) What is the Galois group of the splitting field of the polynomial $f\left(T^{p}\right)=T^{p^{2}}-T^{p}+a$ over \mathbb{F}_{p} ?
(c) (4 points) Find, with proof, the Galois group of the extension $\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q}$.
(d) (4 points) Prove that the set $\{\sqrt{2}, \sqrt{3}, \sqrt{6}\}$ is linearly independent over \mathbb{Q}.

