The University of British Columbia
 Department of Mathematics Qualifying Examination-Differential Equations

September 2020

Differential equations

1. (15 points) Consider the following eigenvalue problem for $w(x)$ with eigenvalue parameter λ :

$$
\begin{align*}
& w^{\prime \prime}+\gamma w^{\prime}=\lambda e^{x} w, \quad 0<x<1 \\
& w^{\prime}(0)+\gamma w(0)=0, \quad w(1)=0 \tag{1}
\end{align*}
$$

Here γ is a real-valued constant satisfying $\gamma>0$.
(a) (4 points) Prove that any eigenvalue λ for (1) must be real-valued.
(b) (4 points) Then, prove that any eigenvalue λ for (1) must satisfy $\lambda<0$.
(c) (4 points) State and derive the orthogonality relation for eigenfunctions of (1).
(d) (3 points) Finally, consider (1) but where the boundary condition on $x=0$ is now modified to $w^{\prime}(0)+\gamma w(0)=\lambda w(0)$, where λ is the eigenvalue parameter. By adapting the argument in (a), prove that any eigenvalue to this modified eigenvalue problem is real-valued.
2. (15 points) Consider the initial-value problem, defined on $t \geq 0$, for $y(t)$

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}+y=\sin t
$$

with initial values $y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=0$.
(a) (4 points) Define $Y(s)=\mathcal{L}(y(t))$, where $\mathcal{L}(y(t))$ denotes the Laplace transform of $y(t)$. Calculate $Y(s)$ explicitly.
(b) (7 points) By examining the roots of some polynomial related to $Y(s)$ in the half-plane $\operatorname{Re}(s) \geq 0$, prove that $y(t)$ is bounded as $t \rightarrow \infty$.
(c) (4 points) Determine constants a and b such that $y(t) \sim a \sin t+b \cos t$ as $t \rightarrow \infty$.
3. (15 points) Consider the 1-D wave equation for $u(x, t)$ satisfying

$$
u_{t t}=c^{2} u_{x x}, \quad-\infty<x<\infty, \quad t>0 ; \quad u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x)
$$

Here $c>0$ is the constant wave speed.
(a) (7 points) State and derive D'Alembert's representation formula for $u(x, t)$ in terms of the initial data $f(x)$ and $g(x)$
(b) (4 points) For $c=2$, determine $u(x, t)$ explicitly for the initial data

$$
f(x)=0, \quad-\infty<x<\infty ; \quad g(x)=\left\{\begin{array}{ll}
1 & |x| \leq 1 \\
0 & |x|>1
\end{array} .\right.
$$

(c) (4 points) For your solution in (b), give a careful plot of $u(x, t)$ versus x for $t=1$ and for $t=4$.

Linear Algebra

4. (15 points) Consider the matrix

$$
A=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 3 & 1 & 3
\end{array}\right]
$$

(a) (2 points) Calculate the trace of A.
(b) (2 points) Calculate the determinant of A.
(c) (4 points) What is the nullity of A (the dimension of the null space)?
(d) (2 points) What is the rank of A ?
(e) (5 points) Write a basis for the nullspace of A.
5. (15 points) Consider the problem of finding polynomials $B_{n}(x)$ with real coefficients such that

$$
\int_{x}^{x+1} B_{n}(t) d t=x^{n}
$$

(a) (4 points) Find a polynomial B_{1} with this property.
(b) (4 points) Find a polynomial B_{2} with this property.
(c) (7 points) Show that there is a unique polynomial $B_{n}(x)$ with this property for all n.
6. (15 points) Let V be a finite dimensional vector space over the real numbers. Let (\mathbf{x}, \mathbf{y}) be an inner product for V and let L be a linear functional on $V(L: V \rightarrow \mathbb{R})$.
(a) (5 points) Write the properties that define a linear functional in this setting.
(b) (10 points) Show that there exists a unique vector \mathbf{y} in V such that

$$
L(\mathbf{x})=(\mathbf{x}, \mathbf{y})
$$

for all \mathbf{x}.

