# The University of British Columbia <br> Department of Mathematics <br> Qualifying Examination-Analysis 

January 2021

In the real and complex analysis parts of this exam, please state carefully any results that you use in your arguments

1. (3 points) True or false: There exists an infinite set $X$ for which the normed space

$$
\mathcal{B}(X)=\{f: X \rightarrow \mathbb{R}: f \text { is bounded }\}
$$

is separable, under the sup norm.
2. (3 points) True or false: Any Lipschitz function $f: \mathbb{Q} \rightarrow \mathbb{R}$ extends uniquely to a continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$.
3. (5 points) True or false: There exists a sequence $\left\{f_{n}: n \geq 1\right\} \subseteq \mathcal{C}[0,1]$ with $\left\|f_{n}\right\|_{\infty} \leq 1$ for which no subsequence of

$$
F_{n}(x)=\int_{0}^{x} f_{n}(t) d t
$$

is uniformly convergent on $[0,1]$. Here $\mathcal{C}[0,1]$ denotes the space of real-valued continuous functions on $[0,1]$.
4. (5 points) True or false: Let $V=\bigcup_{n=1}^{\infty} W_{n}$ be an infinite-dimensional normed vector space, where each $W_{n}$ is a finite-dimensional subspace of $V$. Then $V$ cannot be complete.
5. (5 points) True or false: Every subset of a metric space can be written as the intersection of open sets.
6. (5 points) True or false: Every bounded continuous function on $\mathbb{R}$ is uniformly continuous.
7. (4 points) True or false: The limit of a point-wise convergent sequence of Riemann integrable functions on $[0,1]$ must be Riemann integrable.

## Complex analysis

8. (a) (3 points) Compute

$$
\oint_{\Gamma}\left(\frac{1}{(z-\mathrm{i})^{2}}+2 \bar{z}\right) \mathrm{d} z
$$

where $\Gamma$ is the positively positively oriented triangle with corners $0,1,1+\mathrm{i}$.
(b) (2 points) Let $\mathcal{C}$ be the positively oriented unit circle and let $g$ be a continuous, complex-valued function defined in a neighbourhood of $\mathcal{C}$. Prove that

$$
\overline{\oint_{\mathcal{C}} g(z) d z}=\oint_{-\mathcal{C}} \overline{g(z)} \frac{d z}{z^{2}}
$$

where $-\mathcal{C}$ denotes the negatively oriented circle.
(c) (5 points) Let $0<\alpha<1$. Use the proposed curve $\gamma$ to compute

$$
\int_{0}^{\infty} \frac{x^{\alpha}}{1+x^{2}} \mathrm{~d} x
$$


9. (a) (3 points) Consider the mapping $\theta: \mathbb{C} \rightarrow \mathbb{C}$ given by $\theta(x+\mathrm{i} y)=y+\mathrm{i} x$. Let $\Omega \subset \mathbb{C}$ be open and such that $\theta(\Omega)=\Omega$. Let $f$ be a holomorphic function in $\Omega$. Let $g: \Omega \rightarrow \mathbb{C}$ be given by $g(z)=\overline{f(\theta(z))}$. Prove that $g$ is holomorphic in $\Omega$.
(b) (3 points) Consider the Taylor series of

$$
\frac{6}{b-2 z^{2}+z^{3}}=3+\sum_{n=1}^{\infty} a_{n} z^{n}
$$

around $z_{0}=0$. Compute $b, a_{1}, a_{2}$ and find a recursion relation of the form

$$
a_{n}=\alpha a_{n-1}+\beta a_{n-2}+\gamma a_{n-3}
$$

that is valid for all $n \geq 3$.
(c) (4 points) Recall that $n!!=n(n-2)(n-4) \cdots$, for example $8!!=8 \cdot 6 \cdot 4 \cdot 2$. Show that the unique analytic solution of the differential equation

$$
f^{\prime \prime}(z)-z f^{\prime}(z)-f=0
$$

such that $f(0)=\mathrm{i}$ and $f^{\prime}(0)=0$ is given by $f(z)=\mathrm{i}+\sum_{j=1}^{\infty} \frac{\mathrm{i}}{(2 j+1)!!} z^{2 j+1}$.
10. (a) (4 points) Let $r=\frac{1}{\sqrt{3}}, \Omega=\left\{|z|<\frac{2 r}{3}=\frac{2}{3 \sqrt{3}}\right\}$ and $\gamma$ be the circle centred at the origin of radius r , oriented positively.
(i) Prove that for any $w \in \Omega$, there is a unique solution $\zeta$ in the disc $\{|z|<r\}$ of $z^{3}+z=w$.
(ii) Denote the solution of part (i) by $\zeta=f(w)$. Prove that

$$
f(w)=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \frac{z\left(3 z^{2}+1\right)}{z^{3}+z-w} d z
$$

(b) (3 points) Let $f$ be entire and for which there is $\alpha>0$ such that $|f(z)| \leq B|z|^{\alpha}$ for $|z|$ sufficiently large. Prove that $f$ is a polynomial.
(c) (3 points) Determine all functions $f$ holomorphic in the unit disc such that

$$
f(1 / n)=1 / n^{2}
$$

for all $n$ large enough. Hint: Consider the function $g(z)=f(z)-z^{2}$.

