Differential equations

1. (15 points) Consider the following eigenvalue problem for $\Phi(x)$ with eigenvalue parameter λ :

$$x\Phi'' - \Phi' - \Phi = -x\lambda\Phi, \qquad 1 < x < 2, \Phi(1) = 0, \quad \Phi'(2) = -\Phi(2).$$
(1)

- (a) (4 points) Prove that any eigenvalue λ for (1) must be real-valued.
- (b) (4 points) Then, prove that any eigenvalue λ for (1) must satisfy $\lambda > 0$.
- (c) (3 points) State and derive the orthogonality relation for eigenfunctions of (1).
- (d) (4 points) Finally, suppose that f(x) satisfies the boundary value problem

$$xf'' - f' - f = 1, \qquad 1 < x < 2, f(1) = 0, \qquad f'(2) = -f(2).$$
(2)

Find a formula for the coefficients c_n in the eigenfunction representation $f(x) = \sum_{n=1}^{\infty} c_n \Phi_n(x)$ for the solution to (2). Here, $\Phi_n(x)$ for $n \ge 1$ are the eigenfunctions of (1).

2. (15 points) Let $\omega > 0$ be a real-valued constant, and consider the fourth-order initial-value problem, defined on $t \ge 0$, for y(t)

$$y^{\prime\prime\prime\prime} - y = 4\cos(\omega t). \tag{4}$$

- (a) (5 points) For $\omega \neq 1$, find the general solution to (4) in terms of arbitrary coefficients.
- (b) (4 points) Consider (4) with $\omega \neq 1$ with the initial values y(0) = A and y'(0) = y''(0) = y''(0) = 0. Determine a formula for A in terms of ω so that y(t) is bounded as $t \to \infty$.
- (c) (3 points) Find the particular solution to (4) when $\omega = 1$.
- (d) (3 points) Finally, for $\omega \neq 1$ consider the modified initial value problem on t > 0

$$y'''' + y = 4\cos(\omega t)$$
, with $y(0) = A$, $y'(0) = y''(0) = y'''(0) = 0$. (5)

Is there a value of A for which y(t) is bounded as $t \to \infty$? Explain your answer clearly.

3. (15 points) Consider the diffusion problem for $u(r, \theta, t)$ in a 2-D disk of radius *a* with an inflow/outflow flux boundary condition modeled by

$$\begin{split} u_t &= u_{rr} + \frac{1}{r} u_r + \frac{1}{r^2} u_{\theta\theta} , \quad 0 \le r \le a , \quad 0 \le \theta \le 2\pi , \quad t \ge 0 , \\ u_r(a, \theta, t) &= f(\theta) , \quad u \text{ bounded as } r \to 0 , \quad u \text{ and } u_\theta \text{ are } 2\pi \text{ periodic in } \theta , \\ u(r, \theta, 0) &= g(r, \theta) . \end{split}$$

- (a) (3 points) Write the problem that the **steady-state solution** $U(r, \theta)$ would satisfy. Prove that such a steady-state solution $U(r, \theta)$ does not exist when $\int_{0}^{2\pi} f(\theta) d\theta \neq 0$.
- (b) (8 points) Assume that $\int_0^{2\pi} f(\theta) d\theta = 0$. Calculate an integral representation for the **steady state** solution $U(r, \theta)$ by summing an appropriate eigenfunction expansion.
- (c) (4 points) Assume that $\int_0^{2\pi} f(\theta) d\theta \neq 0$. Calculate an expression for the spatial average of u over the disk, i.e. for $(\pi a^2)^{-1} \int_0^{2\pi} \int_0^a u r \, dr d\theta$, and interpret the effect on this average of the net boundary flux $\int_0^{2\pi} f(\theta) \, d\theta$.

Linear Algebra

- 4. (15 points) Consider the following statements. Either prove the statements are true for all matrices with real entries or provide a counter-example. Note that an orthogonal matrix is square with nonzero, mutually orthogonal columns. A^T denotes the transpose of A.
 - (a) (3 points) The product of two $n \times n$ orthogonal matrices is invertible.
 - (b) (3 points) The difference between two distinct $n \times n$ orthogonal matrices cannot be singular.
 - (c) (3 points) The product of a symmetric matrix and a diagonal matrix is always symmetric.
 - (d) (3 points) The Range of an $n \times n$ matrix is perpendicular to its Nullspace.
 - (e) (3 points) If A is an $n \times n$ matrix with n odd and $A = -A^T$ then A must be singular.
- 5. (15 points) Consider real matrices with the block form

$$C = \left[\begin{array}{cc} A & B \\ B^T & 0 \end{array} \right]$$

where A is a symmetric square matrix, B^T denotes the transpose of B and B is not necessarily square. The bottom right block is a square matrix of zeros.

- (a) (5 points) Show that C is singular if the number of columns of B is strictly larger than the number of rows.
- (b) (10 points) Show that if A is strictly positive definite, then C is nonsingular iff the columns of B are linearly independent.
- 6. (15 points) Let $I \in \mathbb{R}^{N,N}$ be the $N \times N$ dimensional identity matrix, where $N \ge 2$ is an integer, and let $\boldsymbol{u} \in \mathbb{R}^N$ and $\boldsymbol{v} \in \mathbb{R}^N$ be any two distinct vectors each with Euclidean length one. Define the matrix A by

$$A = I - \boldsymbol{u} \boldsymbol{v}^T$$
 .

- (a) (5 points) Calculate all the eigenvalues and eigenvectors of A
- (b) (3 points) Prove that A is nonsingular and calculate det(A).
- (c) (4 points) Derive an explicit formula for A^{-1} .
- (d) (3 points) Let $I \in \mathbb{R}^{N,N}$ for $N \geq 2$ be the identity matrix and define $\boldsymbol{e} \in \mathbb{R}^N \equiv (1, \dots, 1)^T$ and $\boldsymbol{e}_1 \in \mathbb{R}^N \equiv (1, 0, 0, \dots, 0)^T$. Prove that the following linear system

$$\left(I-\frac{1}{N}\boldsymbol{e}\boldsymbol{e}^{T}\right)\boldsymbol{x}=\boldsymbol{e}_{1}\,,$$

has no solution. Next, if e_1 is replaced by an arbitrary vector \boldsymbol{b} , what is the condition on \boldsymbol{b} for this problem to have a solution?