The University of British Columbia
 Department of Mathematics Qualifying Examination-Algebra
 September 2021

Linear Algebra

1. (10 points) Consider a linear map $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which produces the following output:

$$
\begin{gathered}
A\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
7
\end{array}\right] \\
A\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
5 \\
11
\end{array}\right] .
\end{gathered}
$$

(a) What is a matrix representation of A ?
(b) Compute the determinant of A.
(c) Find the eigenvalues of A.
2. (5 points) Consider a dataset consisting of n vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$. The sample covariance matrix is defined to be $S=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{T}$. Find a simple expression for S in terms of the data matrix $X \in \mathbb{R}^{d \times n}$ whose columns correspond to the data vectors:

$$
X=\left[\begin{array}{ccc}
\mid & & \mid \\
x_{1} & \ldots & x_{n} \\
\mid & & \mid
\end{array}\right]
$$

3. (15 points) Let $A \in \mathbb{R}^{d \times d}$ be a real, symmetric matrix. Suppose the eigenvalues are distinct and ordered in decreasing order $\lambda_{1}>\lambda_{2}>\lambda_{3}>\ldots>\lambda_{d}>0$. Denote the eigenvectors of A by v_{1}, \ldots, v_{d}.
(a) Let $b \in \mathbb{R}^{d}$ be a vector that is not an eigenvector of A and which satisfies $\|b\|=1$. Show that

$$
\left|v_{1}^{T} \frac{A b}{\|A b\|}\right|>\left|v_{1}^{T} b\right|
$$

(b) Consider the map $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ given by

$$
T(b)=\frac{A b}{\|A b\|}
$$

What is $\lim _{n \rightarrow \infty} T^{n}(b)$? Justify your answer.

Advanced Algebra

4. (8 points) Let R be a commutative ring with unit and let I and J be ideals.
(a) State the definitions of the ideals $I J$ and $I \cap J$, and show that $I J \subseteq I \cap J$.
(b) Give an example, with proof, of a specific R and distinct ideals I and J such that $I J$ and $I \cap J$ are not equal.
(c) If there exists an $x \in I$ and a $y \in J$ so that $x+y=1$, prove that $I \cap J=I J$.
5. (10 points) Let p be a prime.
(a) Prove that a group of order p^{k}, for k a positive integer, has non-trivial centre.
(b) Prove that a group of order p^{2} must be abelian. Note: you may make use of part (a) even if you have not solved it.
6. (12 points) For this problem, R is a commutative ring and G is a group. You will need three definitions. The group ring $R G$ consists of all finite formal linear combinations $\sum_{i=1}^{m} r_{i} g_{i}$ where $r_{i} \in R$ and $g_{i} \in G$, with product defined by the formula

$$
\begin{equation*}
\sum_{i=1}^{m} r_{i} g_{i} \cdot \sum_{j=1}^{n} s_{j} h_{j}=\sum_{i=1}^{m} \sum_{j=1}^{n} r_{i} s_{j} g_{i} h_{j} \tag{1}
\end{equation*}
$$

(note that the group operation is written multiplicatively). Said another way, $R G$ is the free left R module generated by the elements of G.
Let G be a group with identity element e. A positive cone for G is a subset $\mathcal{P} \in G$ satisfying:

- (multiplicative closure) If $g, h \in \mathcal{P}$ then $g h \in \mathcal{P}$.
- (partition) For all $g \in G$ exactly one of $g \in \mathcal{P}$ or $g^{-1} \in \mathcal{P}$ or $g=e$ holds.

Said another way, \mathcal{P} is a subsemigroup of G for which G may be partitioned as $\mathcal{P} \sqcup\{e\} \sqcup \mathcal{P}^{-1}$.
Finally, for any ring recall that a zero divisor is a non-zero element r in the ring for which there exists a non-zero r^{\prime} satisfying $r r^{\prime}=0$.
(a) Let $R=\mathbb{Z}$ and let G be the cyclic group on 5 elements. By giving an explicit example and proof, show that $R G$ has zero divisors.
(b) Suppose G is a group admitting a positive cone \mathcal{P}. Show that if $g \in G$ and n is a positive integer such that $g^{n}=e$ then $g=e$.
(c) Suppose that G admits a positive cone \mathcal{P} and consider the group ring $R G$. Assume that in the product (1) the g_{i} are distinct and the h_{j} satisfy $h_{j}^{-1} h_{j+1} \in \mathcal{P}$ for $1 \leq j<n$. Prove that there is an element $g_{k} h_{1}$ satisfying $\left(g_{k} h_{1}\right)^{-1} g_{i} h_{j} \in \mathcal{P}$ for all $i \neq k$ and $j \neq 1$.
(d) Suppose that G admits a positive cone and R has no zero divisors. Prove that $R G$ has no zero divisors.

