The University of British Columbia Department of Mathematics Qualifying Examination—Algebra September 2021

Linear Algebra

1. (10 points) Consider a linear map $A : \mathbb{R}^2 \to \mathbb{R}^2$ which produces the following output:

$$A\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}3\\7\end{bmatrix}$$
$$A\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}5\\11\end{bmatrix}.$$

- (a) What is a matrix representation of A?
- (b) Compute the determinant of A.
- (c) Find the eigenvalues of A.
- 2. (5 points) Consider a dataset consisting of n vectors $x_1, \ldots, x_n \in \mathbb{R}^d$. The sample covariance matrix is defined to be $S = \frac{1}{n} \sum_{i=1}^n x_i x_i^T$. Find a simple expression for S in terms of the data matrix $X \in \mathbb{R}^{d \times n}$ whose columns correspond to the data vectors:

$$X = \begin{bmatrix} | & & | \\ x_1 & \dots & x_n \\ | & & | \end{bmatrix}.$$

- 3. (15 points) Let $A \in \mathbb{R}^{d \times d}$ be a real, symmetric matrix. Suppose the eigenvalues are distinct and ordered in decreasing order $\lambda_1 > \lambda_2 > \lambda_3 > \ldots > \lambda_d > 0$. Denote the eigenvectors of A by v_1, \ldots, v_d .
 - (a) Let $b \in \mathbb{R}^d$ be a vector that is not an eigenvector of A and which satisfies ||b|| = 1. Show that

$$\left| v_1^T \frac{Ab}{\|Ab\|} \right| > |v_1^T b|$$

(b) Consider the map $T : \mathbb{R}^d \to \mathbb{R}^d$ given by

$$T(b) = \frac{Ab}{\|Ab\|}.$$

What is $\lim_{n\to\infty} T^n(b)$? Justify your answer.

Advanced Algebra

- 4. (8 points) Let R be a commutative ring with unit and let I and J be ideals.
 - (a) State the definitions of the ideals IJ and $I \cap J$, and show that $IJ \subseteq I \cap J$.
 - (b) Give an example, with proof, of a specific R and distinct ideals I and J such that IJ and $I \cap J$ are not equal.
 - (c) If there exists an $x \in I$ and a $y \in J$ so that x + y = 1, prove that $I \cap J = IJ$.
- 5. (10 points) Let p be a prime.
 - (a) Prove that a group of order p^k , for k a positive integer, has non-trivial centre.
 - (b) Prove that a group of order p^2 must be abelian. Note: you may make use of part (a) even if you have not solved it.
- 6. (12 points) For this problem, R is a commutative ring and G is a group. You will need three definitions. The group ring RG consists of all finite formal linear combinations $\sum_{i=1}^{m} r_i g_i$ where $r_i \in R$ and $g_i \in G$, with product defined by the formula

$$\sum_{i=1}^{m} r_i g_i \cdot \sum_{j=1}^{n} s_j h_j = \sum_{i=1}^{m} \sum_{j=1}^{n} r_i s_j g_i h_j \tag{1}$$

(note that the group operation is written multiplicatively). Said another way, RG is the free left R-module generated by the elements of G.

Let G be a group with identity element e. A positive cone for G is a subset $\mathcal{P} \in G$ satisfying:

- (multiplicative closure) If $g, h \in \mathcal{P}$ then $gh \in \mathcal{P}$.
- (partition) For all $g \in G$ exactly one of $g \in \mathcal{P}$ or $g^{-1} \in \mathcal{P}$ or g = e holds.

Said another way, \mathcal{P} is a subsemigroup of G for which G may be partitioned as $\mathcal{P} \sqcup \{e\} \sqcup \mathcal{P}^{-1}$.

Finally, for any ring recall that a *zero divisor* is a non-zero element r in the ring for which there exists a non-zero r' satisfying rr' = 0.

- (a) Let $R = \mathbb{Z}$ and let G be the cyclic group on 5 elements. By giving an explicit example and proof, show that RG has zero divisors.
- (b) Suppose G is a group admitting a positive cone \mathcal{P} . Show that if $g \in G$ and n is a positive integer such that $g^n = e$ then g = e.
- (c) Suppose that G admits a positive cone \mathcal{P} and consider the group ring RG. Assume that in the product (1) the g_i are distinct and the h_j satisfy $h_j^{-1}h_{j+1} \in \mathcal{P}$ for $1 \leq j < n$. Prove that there is an element $g_k h_1$ satisfying $(g_k h_1)^{-1} g_i h_j \in \mathcal{P}$ for all $i \neq k$ and $j \neq 1$.
- (d) Suppose that G admits a positive cone and R has no zero divisors. Prove that RG has no zero divisors.