The University of British Columbia
 Department of Mathematics Qualifying Examination-Differential Equations

September 2021

Linear Algebra

1. (10 points) Consider a linear map $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which produces the following output:

$$
\begin{gathered}
A\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
7
\end{array}\right] \\
A\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
5 \\
11
\end{array}\right] .
\end{gathered}
$$

(a) What is a matrix representation of A ?
(b) Compute the determinant of A.
(c) Find the eigenvalues of A.
2. (5 points) Consider a dataset consisting of n vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$. The sample covariance matrix is defined to be $S=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{T}$. Find a simple expression for S in terms of the data matrix $X \in \mathbb{R}^{d \times n}$ whose columns correspond to the data vectors:

$$
X=\left[\begin{array}{ccc}
\mid & & \mid \\
x_{1} & \ldots & x_{n} \\
\mid & & \mid
\end{array}\right]
$$

3. (15 points) Let $A \in \mathbb{R}^{d \times d}$ be a real, symmetric matrix. Suppose the eigenvalues are distinct and ordered in decreasing order $\lambda_{1}>\lambda_{2}>\lambda_{3}>\ldots>\lambda_{d}>0$. Denote the eigenvectors of A by v_{1}, \ldots, v_{d}.
(a) Let $b \in \mathbb{R}^{d}$ be a vector that is not an eigenvector of A and which satisfies $\|b\|=1$. Show that

$$
\left|v_{1}^{T} \frac{A b}{\|A b\|}\right|>\left|v_{1}^{T} b\right|
$$

(b) Consider the map $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ given by

$$
T(b)=\frac{A b}{\|A b\|}
$$

where b is an arbitrary non-zero vector. What is $\lim _{n \rightarrow \infty} T^{n}(b)$? Justify your answer.

Differential Equations

4. (a) [4 points] Bessel's equation is

$$
\frac{d^{2} y}{d z^{2}}+\frac{1}{z} \frac{d y}{d z}+\left(1-\frac{m^{2}}{z^{2}}\right) y=0
$$

and has the solution, $y(z)=J_{m}(z)$, which is regular at $z=0$ and satisfies (for any real constant α)

$$
\int_{0}^{x} x\left[J_{m}(\alpha x)\right]^{2} d x=\frac{1}{2} x^{2}\left[J_{m}^{\prime}(\alpha x)\right]^{2}+\frac{1}{2}\left(x^{2}-\frac{m^{2}}{\alpha^{2}}\right)\left[J_{m}(\alpha x)\right]^{2} .
$$

Given that $J_{0} \approx 1-\frac{1}{2} z^{2}+\ldots$ and $J_{1} \approx z+\ldots$ for $z \ll 1$, differentiate Bessel's equation for $m=0$ to establish that $J_{1}(z)=-J_{0}^{\prime}(z)$. Then show that

$$
\int_{0}^{z} z J_{0}(z) d z=z J_{1}(z) \quad \& \quad \int_{0}^{z} z^{2} J_{1}(z) d z=2 z J_{1}(z)-z^{2} J_{0}(z)
$$

(b) [6 points] Using Sturm-Liouville theory establish that the eigenvalue problem,

$$
\frac{d^{2} y}{d x^{2}}+\frac{1}{x} \frac{d y}{d x}+\lambda y-\frac{y}{x^{2}}=0
$$

has an eigenvalue λ that is positive if $y(x)$ is regular on $0 \leq x \leq 1$ and satisfies $y(1)=0$. What are the eigenfunctions $y(x)$? Show that

$$
x=-\sum_{n=1} \frac{2 J_{0}\left(k_{n}\right) J_{1}\left(k_{n} x\right)}{k_{n}\left[J_{1}^{\prime}\left(k_{n}\right)\right]^{2}},
$$

for some constants k_{n}.
5. (10 points) (a) An ODE model for the inter-personal relationship between two individuals is as follows: a couple has attraction $x(t)$ but repulsion $y(t)$, leading to the degree of happiness $z(t)$ and anguish $w(t)$, all satisfying the ODEs,

$$
x^{\prime}+x+y=0, \quad y^{\prime}-y-2 x=0, \quad z^{\prime}+z=y+1, \quad w^{\prime}+w^{2}(x+1)=0 .
$$

If the relationship begins with pure repulsion and anguish, $(x(0), y(0), z(0), w(0))=(0,1,0,1)$, find the solution. What happens for long times? Is a long term relationship sensible?
(b) Using variation of constants or otherwise, solve

$$
y^{\prime \prime}+2 y^{\prime}+y=t^{a} e^{-t}
$$

for $y(0)=y^{\prime}(0)=0$ and $a>0$ is a parameter.
6. (10 points) Use separation of variables to solve

$$
\left(r^{2} u_{r}\right)_{r}+u_{\theta \theta}+\frac{1}{4} u=0
$$

on the semicircle, $r \leq 1$ and $0 \leq \theta \leq \pi$, subject to $u(r, 0)=u(r, \pi)=0$ and $u(1, \theta)=f(\theta)$. Recalling that $\sum_{n=1}^{\infty} z^{n}=z /(1-z)$, sum your series for $u(r, \theta)$, and hence write down a compact expression for the solution in terms of a single integral. Evaluate the integral if the boundary function is localized with $f(\theta)=\delta\left(\theta-\frac{1}{2} \pi\right)$, where $\delta(x)$ is Dirac's delta-function.

