Differential Equations Qualifying Exam

University of British Columbia

August $30^{\text {th }} 2013$

1. Consider the system of linear equations with real coefficients

$$
\begin{aligned}
x_{1}+x_{3}-x_{4} & =-4 \\
x_{1}+2 x_{2}-x_{3}+3 x_{4} & =2 \\
2 x_{1}+4 x_{2}-2 x_{3}+7 x_{4} & =5 \\
x_{2}-x_{3}+2 x_{4} & =3
\end{aligned}
$$

(a) Find all solutions to this system of equations.
(b) The system can be written in the matrix form as $A \vec{x}=\vec{b}$. Let $L_{A}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be the linear transformation defined by the matrix A. Find a basis for the kernel and a basis for the image of L_{A}.
2. Let P_{3} be the vector space of polynomials in one variable with real coefficients and of degree at most 3 . Let $T: P_{3} \rightarrow P_{3}$ be the linear operator

$$
T(f(x))=x f^{\prime \prime}(x)+2 f(x)
$$

(a) Find the matrix of T with respect to some basis of P_{3}.
(b) Find the Jordan canonical form and a Jordan canonical basis for T.
3. Let $T: V \rightarrow V$ be a linear operator on a finite dimensional vector space V. Let $W \subset V$ be a subspace, such that $T(W) \subset W$.
(a) Assume that $\vec{v}_{1}+\vec{v}_{2}+\ldots+\vec{v}_{n} \in W$ for some vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n} \in V$ that are eigenvectors of T corresponding to distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Prove that then the vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ lie in W.
(b) Let $\left.T\right|_{W}: W \rightarrow W$ be the restriction of T to W. Prove that if T is diagonalizable, then $\left.T\right|_{W}$ is also diagonalizable.
4. Consider the third order differential equation for $y(t)$ for $t \geq 0$ given by

$$
y^{\prime \prime \prime}-4 y^{\prime}=-4+e^{-t}, \quad t \geq 0
$$

(a) Determine the explicit form of the general solution to this problem.
(b) For the initial values $y(0)=0, y^{\prime}(0)=\alpha$ and $y^{\prime \prime}(0)=1$ find the unique value of α for which $\lim _{t \rightarrow \infty} y^{\prime}=1$.
5. Let ω, A, and T be constants with $\omega>0, T>0$. Consider the mass-spring system for $y(t)$ subject to a delta-function forcing, modeled by

$$
\begin{aligned}
& y^{\prime \prime}+\omega^{2} y=A \delta(t-T), \quad t \geq 0 \\
& y(0)=1, \quad y^{\prime}(0)=-1
\end{aligned}
$$

(a) Calculate the solution using Laplace transforms.
$\underline{\text { Some potentially useful Laplace transforms: }}$

$$
\begin{aligned}
f(t) & \mathcal{L}\{f(t)\} \\
1 & \frac{1}{s}, s>0 \\
t & \frac{1}{s^{2}}, s>0 \\
e^{a t} & \frac{1}{s-a}, s>a \\
\sin (a t) & \frac{a}{s^{2}+a^{2}}, s>0 \\
\cos (a t) & \frac{s}{s^{2}+a^{2}}, s>0 \\
\sinh (a t) & \frac{a}{s^{2}-a^{2}}, s>|a| \\
\cosh (a t) & \frac{s}{s^{2}-a^{2}}, s>|a| \\
e^{a t} \sin (b t) & \frac{b}{(s-a)^{2}+b^{2}}, s>a \\
e^{a t} \cos (b t) & \frac{s-a}{(s-a)^{2}+b^{2}}, s>a
\end{aligned}
$$

(b) Now set $\omega=1$. From your solution in (a) show that one can choose A and T so that $y=0$ for all $t>T$. (This shows that an appropriate delta function forcing at time $t=T$ can extinguish the oscillation that exists for $0 \leq t<T$).
6. This problem concerns the wave equation $u_{t t}-u_{x x}+m^{2} u=f(x, t)$ on the whole line where m is a nonnegative constant.
(a) Assume that $f=0$ and that u is a solution which is C^{2} and that $u(x, t)$ is zero for x outside a sufficiently large interval for each t. Show that the energy $E(t)=$ $\frac{1}{2} \int_{-\infty}^{\infty}\left(u_{t}^{2}+u_{x}^{2}+m^{2} u^{2}\right) d x$ is conserved (i.e. independent of t).
(b) For this part we assume that $m=0$ and $f=0$. Determine explicitly the solution $Q(x, t)$ of $u_{t t}-u_{x x}=0$ with initial conditions $u(x, 0)=0, u_{t}(x, 0)=\psi(x)$ where $\psi(x)=0$ for $x \leq 0$ and $\psi(x)=1$ for $x>0$.
(c) Let $Q(x, t)$ be as in part (b). Calculate $S(x, t)=Q_{x}(x, t)$ for $t>0$ wherever the derivative exists, and show that the solution of the inhomogeneous wave equation $u_{t t}-u_{x x}=f(x, t)$ with initial conditions $u(x, 0)=u_{t}(x, 0)=0$ may be written

$$
u(x, t)=\int_{0}^{t}\left(\int_{-\infty}^{\infty} S(x-y, t-s) f(y, s) d y\right) d s
$$

