Algebra Qualifying Exam

University of British Columbia

August $30^{\text{th}} 2013$

1. Consider the system of linear equations with real coefficients

$$x_{1} + x_{3} - x_{4} = -4$$

$$x_{1} + 2x_{2} - x_{3} + 3x_{4} = 2$$

$$2x_{1} + 4x_{2} - 2x_{3} + 7x_{4} = 5$$

$$x_{2} - x_{3} + 2x_{4} = 3$$

- (a) Find all solutions to this system of equations.
- (b) The system can be written in the matrix form as $A\vec{x} = \vec{b}$. Let $L_A : \mathbb{R}^4 \to \mathbb{R}^4$ be the linear transformation defined by the matrix A. Find a basis for the kernel and a basis for the image of L_A .
- 2. Let P_3 be the vector space of polynomials in one variable with real coefficients and of degree at most 3. Let $T: P_3 \to P_3$ be the linear operator

$$T(f(x)) = xf''(x) + 2f(x).$$

- (a) Find the matrix of T with respect to some basis of P_3 .
- (b) Find the Jordan canonical form and a Jordan canonical basis for T.
- 3. Let $T: V \to V$ be a linear operator on a finite dimensional vector space V. Let $W \subset V$ be a subspace, such that $T(W) \subset W$.
 - (a) Assume that $\vec{v}_1 + \vec{v}_2 + \ldots + \vec{v}_n \in W$ for some vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \in V$ that are eigenvectors of T corresponding to distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. Prove that then the vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ lie in W.
 - (b) Let $T|_W : W \to W$ be the restriction of T to W. Prove that if T is diagonalizable, then $T|_W$ is also diagonalizable.
- 4. (a) Give an explicit description of one Sylow 3-subgroup in S_6 and find the number of all Sylow 3-subgroups in S_6 .
 - (b) Let *H* be the subgroup of S_7 generated by $\sigma = (1\ 2\ 3\ 4\ 5\ 6\ 7)$ and $\tau = (2\ 3\ 5)(4\ 7\ 6)$. Prove that *H* is a non-abelian group of order 21.
 - (c) Show that there are as many non-isomorphic finite abelian groups of order 2^{36} as the number of conjugacy classes in the symmetric group S_{36} .
- 5. (a) Which of the rings $\mathbb{Q}[x]/(x^4+1)$, $\mathbb{R}[x]/(x^4+1)$ is a field. Justify your answer with full details.

- (b) Let $S = \{f \in \mathbb{R}[x] \mid f(2) = f'(2) = f''(2) = 0\}$. Show that S is an ideal of $\mathbb{R}[x]$ and give a generator of S.
- (c) Consider the ring $R = \mathbb{Q}[x]/(f(x))$, where $f(x) \in \mathbb{Q}[x]$ is a nonconstant polynomial. Prove that the intersection of all maximal ideals of R is equal to the set of all nilpotents in R. Your proof must include an explicit description of all maximal ideals and all nilpotents in R. (Recall that $r \in R$ is nilpotent if $r^n = 0$ for some n > 0.)
- 6. Let p be an odd prime and \mathbb{F}_p the finite field containing p elements. Let $\operatorname{GL}_2(\mathbb{F}_p)$ be the group of 2×2 matrices over the field \mathbb{F}_p with non-zero determinant (the group operation is matrix multiplication). Consider two subgroups, $\operatorname{SL}_2(\mathbb{F}_p)$ the set of matrices of determinant 1 and U the set of upper triangular matrices

$$U = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mid a, d \in \mathbb{F}_p^{\times}, b \in \mathbb{F}_p \right\}.$$

Suppose that L/K is a Galois extension with Galois group $\operatorname{Gal}(L/K) \simeq \operatorname{GL}_2(\mathbb{F}_p)$. Let L_1 be the fixed field of $\operatorname{SL}_2(\mathbb{F}_p)$ and let L_2 be the fixed field of U.

- (a) Compute the degrees [L:K], $[L_1:K]$ and $[L_2:K]$.
- (b) What is the Galois group $Gal(L/L_1L_2)$?
- (c) Show that L_1L_2 is not a Galois extension of K, but is Galois over L_2 and compute $\operatorname{Gal}(L_1L_2/L_2)$.