Algebra Qualifying Exam

University of British Columbia

August $30^{\text {th }} 2013$

1. Consider the system of linear equations with real coefficients

$$
\begin{aligned}
x_{1}+x_{3}-x_{4} & =-4 \\
x_{1}+2 x_{2}-x_{3}+3 x_{4} & =2 \\
2 x_{1}+4 x_{2}-2 x_{3}+7 x_{4} & =5 \\
x_{2}-x_{3}+2 x_{4} & =3
\end{aligned}
$$

(a) Find all solutions to this system of equations.
(b) The system can be written in the matrix form as $A \vec{x}=\vec{b}$. Let $L_{A}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be the linear transformation defined by the matrix A. Find a basis for the kernel and a basis for the image of L_{A}.
2. Let P_{3} be the vector space of polynomials in one variable with real coefficients and of degree at most 3 . Let $T: P_{3} \rightarrow P_{3}$ be the linear operator

$$
T(f(x))=x f^{\prime \prime}(x)+2 f(x)
$$

(a) Find the matrix of T with respect to some basis of P_{3}.
(b) Find the Jordan canonical form and a Jordan canonical basis for T.
3. Let $T: V \rightarrow V$ be a linear operator on a finite dimensional vector space V. Let $W \subset V$ be a subspace, such that $T(W) \subset W$.
(a) Assume that $\vec{v}_{1}+\vec{v}_{2}+\ldots+\vec{v}_{n} \in W$ for some vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n} \in V$ that are eigenvectors of T corresponding to distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Prove that then the vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ lie in W.
(b) Let $\left.T\right|_{W}: W \rightarrow W$ be the restriction of T to W. Prove that if T is diagonalizable, then $\left.T\right|_{W}$ is also diagonalizable.
4. (a) Give an explicit description of one Sylow 3-subgroup in S_{6} and find the number of all Sylow 3-subgroups in S_{6}.
(b) Let H be the subgroup of S_{7} generated by $\sigma=(1234567)$ and $\tau=(235)(476)$. Prove that H is a non-abelian group of order 21.
(c) Show that there are as many non-isomorphic finite abelian groups of order 2^{36} as the number of conjugacy classes in the symmetric group S_{36}.
5. (a) Which of the rings $\mathbb{Q}[x] /\left(x^{4}+1\right), \mathbb{R}[x] /\left(x^{4}+1\right)$ is a field. Justify your answer with full details.
(b) Let $S=\left\{f \in \mathbb{R}[x] \mid f(2)=f^{\prime}(2)=f^{\prime \prime}(2)=0\right\}$. Show that S is an ideal of $\mathbb{R}[x]$ and give a generator of S.
(c) Consider the ring $R=\mathbb{Q}[x] /(f(x))$, where $f(x) \in \mathbb{Q}[x]$ is a nonconstant polynomial. Prove that the intersection of all maximal ideals of R is equal to the set of all nilpotents in R. Your proof must include an explicit description of all maximal ideals and all nilpotents in R. (Recall that $r \in R$ is nilpotent if $r^{n}=0$ for some $n>0$.)
6. Let p be an odd prime and \mathbb{F}_{p} the finite field containing p elements. Let $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ be the group of 2×2 matrices over the field \mathbb{F}_{p} with non-zero determinant (the group operation is matrix multiplication). Consider two subgroups, $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ the set of matrices of determinant 1 and U the set of upper triangular matrices

$$
U=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \right\rvert\, a, d \in \mathbb{F}_{p}^{\times}, b \in \mathbb{F}_{p}\right\} .
$$

Suppose that L / K is a Galois extension with Galois group $\operatorname{Gal}(\mathrm{L} / \mathrm{K}) \simeq \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$. Let L_{1} be the fixed field of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ and let L_{2} be the fixed field of U.
(a) Compute the degrees $[L: K],\left[L_{1}: K\right]$ and $\left[L_{2}: K\right]$.
(b) What is the Galois group $\operatorname{Gal}\left(L / L_{1} L_{2}\right)$?
(c) Show that $L_{1} L_{2}$ is not a Galois extension of K, but is Galois over L_{2} and compute $\operatorname{Gal}\left(L_{1} L_{2} / L_{2}\right)$.

