Analysis Qualifying Exam

University of British Columbia

August $30^{\text {th }} 2013$

1. Suppose that $\left\{a_{n}\right\}$ is a sequence of real numbers such that $\lim _{n \rightarrow \infty} a_{n}=L$. Prove that

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(a_{1}+\cdots+a_{n}\right)=L
$$

2. Find the point (or points, if there is more than one) on the surface $x y z^{3}=2$ that is closest to the origin.
3. Use Stokes's Theorem to evaluate $\int_{C}(x-z) d x+(x+y) d y+(y+z) d z$, if C is the ellipse where the plane $z=y$ intersects the cylinder $x^{2}+y^{2}=1$, oriented counterclockwise as viewed from above.
4. (a) Use residues to compute

$$
\int_{-\infty}^{\infty} \frac{\sin (x)}{x^{2}+4 x+5} d x
$$

(b) How many roots (counted with multiplicity) of the equation $z^{4}-5 z^{3}+z-2=0$ lie in the disk $|z|<1$?
5. Let $n \geq 1$ and let $\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ be complex numbers such that $a_{n} \neq 0$. For $\theta \in \mathbb{R}$ define

$$
f(\theta)=a_{0}+a_{1} e^{i \theta}+a_{2} e^{2 i \theta}+\cdots+a_{n} e^{n i \theta}
$$

Prove that there exists some $\theta \in \mathbb{R}$ such that $|f(\theta)|>\left|a_{0}\right|$.
6. (a) Let a be a complex number and let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a non-constant entire function such that $f(a z)=f(z)$ for all $z \in \mathbb{C}$. Prove that there exists a positive integer n such that $a^{n}=1$.
(b) Let a and b be complex numbers and let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a non-constant entire function such that $f(a z+b)=f(z)$ for all $z \in \mathbb{C}$. Prove that there exists a positive integer n such that $a^{n}=1$.

