Analysis Qualifying Exam

University of British Columbia

August $30^{\text{th}} 2013$

1. Suppose that $\{a_n\}$ is a sequence of real numbers such that $\lim_{n\to\infty} a_n = L$. Prove that

$$\lim_{n \to \infty} \frac{1}{n} (a_1 + \dots + a_n) = L.$$

- 2. Find the point (or points, if there is more than one) on the surface $xyz^3 = 2$ that is closest to the origin.
- 3. Use Stokes's Theorem to evaluate $\int_C (x-z)dx + (x+y)dy + (y+z)dz$, if C is the ellipse where the plane z = y intersects the cylinder $x^2 + y^2 = 1$, oriented counterclockwise as viewed from above.
- 4. (a) Use residues to compute

$$\int_{-\infty}^{\infty} \frac{\sin(x)}{x^2 + 4x + 5} dx.$$

- (b) How many roots (counted with multiplicity) of the equation $z^4 5z^3 + z 2 = 0$ lie in the disk |z| < 1?
- 5. Let $n \ge 1$ and let $\{a_0, a_1, \ldots, a_n\}$ be complex numbers such that $a_n \ne 0$. For $\theta \in \mathbb{R}$ define

$$f(\theta) = a_0 + a_1 e^{i\theta} + a_2 e^{2i\theta} + \dots + a_n e^{ni\theta}$$

Prove that there exists some $\theta \in \mathbb{R}$ such that $|f(\theta)| > |a_0|$.

- 6. (a) Let a be a complex number and let $f : \mathbb{C} \to \mathbb{C}$ be a non-constant entire function such that f(az) = f(z) for all $z \in \mathbb{C}$. Prove that there exists a positive integer nsuch that $a^n = 1$.
 - (b) Let a and b be complex numbers and let $f : \mathbb{C} \to \mathbb{C}$ be a non-constant entire function such that f(az + b) = f(z) for all $z \in \mathbb{C}$. Prove that there exists a positive integer n such that $a^n = 1$.