Applied Qualifying Exam January 10, 2004. Part I

1. For what values of the real constants a and b is

$$
f(z)=a x y+i\left(x^{2}+b y^{2}\right)
$$

analytic? Here we have used $z=x+i y$.
2. Find the distance from the ellipse

$$
\frac{x^{2}}{4}+y^{2}=1
$$

to the straight line $x+y=4$.
3. Let A be an $n \times n$ matrix with complex entries. An $n \times n$-matrix B is called a square root of A if $B^{2}=A$. Suppose A is non-singular and has n distinct eigenvalues. How many square roots does A have?
4. Let f be a real function on $[0,1]$ having the following property: for any real y, the equation $f(x)-y=0$ has either no roots, or exactly two roots. Prove that f cannot be continuous at every point in the interval $[0,1]$.
5. Define a sequence x_{1}, x_{2}, \ldots recursively by $x_{0}=c, x_{1}=1-c$, and

$$
x_{n+2}=2.5 x_{n+1}-1.5 x_{n}
$$

for $n \geq 1$. For what values of c does the sequence $\left\{x_{n}\right\}$ converge? If it converges, what is the value of $\lim _{n \rightarrow \infty} x_{n}$?
6. Consider the system in the plane

$$
\frac{d x}{d t}=y-x^{3}, \quad \frac{d y}{d t}=x-y^{2} .
$$

(a) Find all fixed points of this system. Use linearized stability analysis to determine which fixed points are stable.
(b) Sketch the phase portrait (solution curves in the $x-y$ plane).

Applied Qualifying Exam January 10, 2004. Part II

1. Consider the following partial differential equation for $u(x, t)$:

$$
\begin{equation*}
u_{t}+\alpha u_{x x x x}+\beta u_{x x}+\gamma u u_{x}=0 \tag{1}
\end{equation*}
$$

where $u(x, t)$ is L-periodic in x for all t. The parameters α, β and γ are positive.
(a) Use scaling to minimize the number of essential parameters.
(b) Show that for smooth solutions $u(x, t)$ of (1)

$$
M=\int_{0}^{L} u(x, t) d x
$$

is constant in time.
2. Introduce new coordinates into the plane quadrant $x>0, y>0$ through the transformation:

$$
\xi=x^{2} y ; \quad \eta=x y^{2} .
$$

(a) Determine x and y as functions of ξ and η.
(b) Compute the Jacobian matrices

$$
\mathbf{A}=\left[\begin{array}{ll}
x_{\xi} & x_{\eta} \\
y_{\xi} & y_{\eta}
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{ll}
\xi_{x} & \xi_{y} \\
\eta_{x} & \eta_{y}
\end{array}\right]
$$

(c) Compute and simplify $\mathbf{A B}$. Comment on the result.
3. Are the following statements true? In each case give a proof or a counterexample. Assume that A and B are $n \times n$-matrices with real entries and $n \geq 2$.
(a) If $\operatorname{det}(A)=\operatorname{det}(B)=1$ then $A+B$ is non-singular.
(b) If A and B are symmetric matrices all of whose eigenvalues are strictly positive, then $A+B$ is non-singular.
4. Evaluate the integral

$$
\int_{0}^{\infty} \frac{\cos x}{x^{2}+9} d x
$$

5. A function is said to be even if $f(x)=f(-x)$ for all x. Let \mathcal{V} be the vector space of all even polynomials $p(x)$ of degree less than or equal to $2 n$. Let \mathbf{A} be the operator

$$
\mathbf{A}=\frac{d^{2}}{d x^{2}}
$$

acting on \mathcal{V}.
(a) Prove that 0 is the only eigenvalue of \mathbf{A}. What is the corresponding eigenspace?
(b) Prove that the operator mapping the polynomial $p(x)$ into the polynomial

$$
q(x)=p(x+1)+p(x-1)
$$

defines a linear mapping \mathbf{B} of \mathcal{V} into itself.
(c) Does \mathbf{B} commute with \mathbf{A} ?
6. Consider the following PDE problem for $u(x, t)$ on the domain $x \geq 0$ and $t \geq 0$:

$$
\begin{aligned}
u_{t} & =u_{x x} \text { for } x>0, t>0 \\
u(x, 0) & =0 \text { for } x \geq 0 \\
u(0, t) & =\sin \omega t \text { for } t \geq 0 \\
\lim _{x \rightarrow \infty} u(x, t) & =0 \text { for all } t \geq 0
\end{aligned}
$$

where ω is a given positive constant, the angular frequency of the forcing at the boundary. As $t \rightarrow \infty$ the solution u tends to a limiting solution that has angular frequency ω. Determine an explicit formula for this limiting solution.

