Pure Mathematics Qualifying Exam, January10, 2004. Part I

1. Find the shortest distance from a point on the ellipse

$$
\frac{x^{2}}{4}+y^{2}=1
$$

to the straight line $x+y=4$.
2. Let A be an $n \times n$ matrix with complex entries. An $n \times n$-matrix B is called a square root of A if $B^{2}=A$. Suppose A is non-singular and has n distinct eigenvalues. How many square roots does A have?
3. Let $f(z)$ be an analytic function and $|f(z)| \leq 1$ in the unit disc $D \subset \mathbb{C}$. Given $z_{0} \in D$, find a Möbius transformation (i.e., a transformation of the form $z \mapsto \frac{a z+b}{c z+d}$) which maps D to D and sends z_{0} to 0 . Then show that

$$
\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right| \leq \frac{2}{1-\left|z_{0}\right||z|}
$$

for any $z \in D$.
4. A rational function $f\left(x_{1}, \ldots, x_{n}\right)$ in n variables is a ratio of two polynomials,

$$
f=\frac{p\left(x_{1}, \ldots, x_{n}\right)}{q\left(x_{1}, \ldots, x_{n}\right)}
$$

where q is not identically 0 . We shall assume throughout that the coefficients of our polynomials are real numbers. A rational function $f\left(x_{1}, \ldots, x_{n}\right)$ is called symmetric if $f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$ for any permutation σ of $\{1, \ldots, n\}$. We shall denote the field of rational functions in n variables by F and the subfield of symmetric rational functions by $S \subset F$.
(a) Show that F is a finite extension of S of degree n !.
(b) Show that $F=S(h)$, where $h=x_{1}+2 x_{2}+\cdots+n x_{n}$. In other words, show that h generates F as a field extension of F.
5. Let f be a real function on $[0,1]$ having the following property: for any real y, the equation $f(x)-y=0$ has either no roots, or exactly two roots. Prove that f is not continuous.
6. Define a sequence x_{1}, x_{2}, \ldots recursively by $x_{0}=c, x_{1}=1-c$, and $x_{n+2}=2.5 x_{n+1}-$ $1.5 x_{n}$ for $n \geq 1$. For what values of c does the sequence $\left\{x_{n}\right\}$ converge? If it converges, what is the value of $\lim _{n \rightarrow \infty} x_{n}$?

Pure Mathematics Qualifying Exam, January 10, 2004. Part II

7. Evaluate the integral

$$
I=\int_{0}^{\infty} \frac{\cos (x)}{x^{2}+9} d x
$$

8. Let G be a group of order $a b$, where a and b are relatively prime positive integers. Suppose H is a normal subgroup of order a. Show that H contains every subgroup of G whose order divides a.
9. Let $\left\{f_{n}\right\}$ be an equicontinuous sequence of functions on a compact set K, which converges pointwise to a function f.
(a) Prove that f is continuous.
(b) Prove that $\left\{f_{n}\right\}$ converges uniformly to f.
10. Are the following statements true? In each case give a proof of a counterexample. Assume that A and B are $n \times n$-matrices with real entries and $n \geq 2$.
(a) If $\operatorname{det}(A)=\operatorname{det}(B)=1$ then $A+B$ is non-singular.
(b) If A and B are symmetric matrices all of whose eigenvalues are strictly positive, then $A+B$ is non-singular.
11. Suppose that c is an isolated singularity of an analytic function f on $\mathbb{C} \backslash\{c\}$ and that $g(z)=e^{f(z)}$.
(a) Show that if $g(z)$ has a pole of order m at $z=c$, then $f^{\prime}(z)$ has a simple pole of residue $-m$ at $z=c$.
(b) Use this to show that $g(z)$ must have an essential singularity at $z=c$.
12. Prove that every finite multiplicative subgroup of the complex numbers is cyclic.
