Pure Math Qualifying Exam: Jan. 8, 2005

Part I

1. Let b and c be real numbers, $c>0$. Use contour integration to evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{\cos (x-b)}{x^{2}+c^{2}} d x
$$

2. Let A be an $n \times n$ real symmetric matrix, and define the matrix e^{A} by the convergent series

$$
e^{A}:=\sum_{j=0}^{\infty} \frac{1}{j!} A^{j}=I+A+\frac{1}{2} A^{2}+\frac{1}{3!} A^{3}+\cdots .
$$

Show that e^{A} is non-singular.
3. Let p be a prime number and G a group of order p^{3}. Show that for any $g, h \in G$

$$
g^{p} h=h g^{p} .
$$

4. Consider the vector field

$$
\mathbf{F}(x, y, z)=\frac{x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

(a) Verify that $\nabla \cdot \mathbf{F}=0$ on $\mathbb{R}^{3} \backslash\{0\}$.
(b) Let S be a sphere centred at the origin, with "outward" orientation. Show that

$$
\begin{equation*}
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=4 \pi \tag{*}
\end{equation*}
$$

(c) Now let $E \subset \mathbb{R}^{3}$ be an open region with smooth boundary S (given "outward" orientation), and suppose $0 \in E$. Show that $(*)$ still holds.
5. (a) Let $\mathrm{f}(\mathrm{z})$ be an analytic function on an open, bounded, connected region $\Omega \subset \mathbb{C}$, and suppose f is continuous on the boundary $\partial \Omega$. Suppose also that $|f(z)|$ is constant on $\partial \Omega$. Show that either f has a zero in Ω, or f is constant.
(b) Find all functions which are analytic in the open unit disk $\{z \in \mathbb{C}||z|<1\}$, continuous on the closed unit disk, and which satisfy $|z| \leq|f(z)| \leq 1$ for $|z| \leq 1$.
6. Let V be the vector space of all polynomials $p(x)$ with real coefficients. Let A and B denote the linear transformations on V of (respectively) multiplication by x, and differentiation. That is, $A: p(x) \mapsto x p(x)$, and $B: p(x) \mapsto p^{\prime}(x)$.
(a) Show that A has no eigenvalues, and that 0 is the only eigenvalue of B .
(b) Compute the transformation $B A-A B$.
(c) Show that no two linear transformations A, B on a finite dimensional real vector space can satisfy $B A-A B=I$ (here I denotes the identity transformation).

Pure Math Qualifying Exam: Jan. 8, 2005

Part II

1. (a) Show that a continuous function on \mathbb{R} cannot take every real value exactly twice.
(b) Find a continuous function on \mathbb{R} that takes each real value exactly 3 times.
2. Let R be the ring

$$
R=\mathbb{Z}[\sqrt{-3}]=\mathbb{Z}+\mathbb{Z} \sqrt{-3}
$$

(a) Show that $2 R \subset R$ is not a prime ideal.
(b) Show that 2 is an irreducible element of R; i.e., if $2=u v$ then either u or v is a unit.
(c) Is R a principal ideal domain (PID)?
3. Show that an entire function $f(z)$ satisfying $\lim _{|z| \rightarrow \infty}|f(z)|=c$ (for some $c \in(0, \infty)$) is constant.
4. For a vector $v=\left(v_{1}, \ldots, v_{n}\right)^{T} \in \mathbb{R}^{n}$, define $\|v\|_{1}:=\sum_{j=1}^{n}\left|v_{j}\right|$, and for an $n \times n$ matrix A, define

$$
\|A\|_{1}:=\sup _{v \in \mathbb{R}^{n} ; v \neq 0} \frac{\|A v\|_{1}}{\|v\|_{1}} .
$$

Show that if $A=\left(a_{i j}\right)$, then

$$
\|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right| .
$$

5. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of continuous functions on $[0,1]$ satisfying

$$
\left|f_{n}(x)-f_{n}(y)\right| \leq L|x-y|
$$

for all $x, y \in[0,1]$, and for all n (here L is a fixed constant), and suppose f_{n} converges pointwise to a function f. Show that f_{n} converges to f uniformly, and that

$$
|f(x)-f(y)| \leq L|x-y|
$$

for all x, y.
6. Let $\alpha \in \mathbb{C}$ be an algebraic number and p a prime. Show that there exist field extensions of finite degree

$$
\mathbb{Q} \subset F \subset K
$$

such that $\alpha \in K$, the degree $|K: F|$ is a power of p and $|F: \mathbb{Q}|$ is prime to p.

