Pure Mathematics Qualifying Exam

January 7, 2006

Part I

Problem 1. Find the critical points of

$$
f(x, y)=x^{2}+2 x y+2 y^{2}-\frac{1}{2} y^{4}
$$

and classify each one as a local minimum, local maximum, or saddle point.

Problem 2. Let G be a finite group and $H<G$ a subgroup such that the index $[G: H]=p$ is the smallest prime number dividing the order of G. Prove that H is normal in G. (Hint: study the action of G on the cosets of H and the resulting homomorphism to the permutation group.)

Problem 3. Evaluate using the method of residues:

$$
\int_{0}^{\infty} \frac{x^{2} d x}{x^{4}+5 x^{2}+6}
$$

Problem 4. Let V be the vector space of polynomials in one variable of degree at most n, with real coefficients. Given distinct real numbers $a_{0}, a_{1}, \ldots, a_{n}$, show that any polynomial $f(x) \in V$ can be expressed in the form

$$
f(x)=c_{0}\left(x+a_{0}\right)^{n}+c_{1}\left(x+a_{1}\right)^{n}+\ldots+c_{n}\left(x+a_{n}\right)^{n}
$$

for some $c_{i} \in \mathbb{R}$.

Problem 5. Consider the complex multi-valued function

$$
f(z)=\left(z^{3}+z^{2}-6 z\right)^{1 / 2} .
$$

(a) Find a set of branch cuts of the complex plane such that on the complement of these cuts $f(z)$ can be defined as a single-valued function. Moreover, the cuts should be such that if we require $f(-1)=-\sqrt{6}$, then such a single-valued $f(z)$ is unique.
(b) Using the branch cuts from your answer to part (a), choose any point plying on one of the cuts, but not a branch point itself. Describe the limiting behavior of $f(z)$ as z approaches p along different paths.

Problem 6. Let (X, d) be a complete metric space (i.e., all Cauchy sequences converge) and let $L: X \rightarrow X$ be such that for some $k<1$

$$
d(L x, L y)<k d(x, y) \quad \text { for all } x, y \in X .
$$

Prove that there exists a point $z \in X$ such that $L(z)=z$ and that this z is unique.

Pure Mathematics Qualifying Exam
 January 7, 2006

Part II

Problem 1. Let S be the hemisphere $\left\{x^{2}+y^{2}+z^{2}=1, z \geq 0\right\}$ oriented with \mathbf{N} pointing away from the origin. Use the divergence theorem to evaluate the flux integral

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}
$$

where

$$
\mathbf{F}=\left(x+\cos \left(z^{2}\right)\right) \mathbf{i}+\left(y+\ln \left(x^{2}+z^{5}\right)\right) \mathbf{j}+\sqrt{x^{2}+y^{2}} \mathbf{k}
$$

Problem 2. Let R be a principal ideal domain and $I \subset R$ a non-zero ideal.
(a) Give a definition of principal ideal domain (assume that we know what a domain is). Explain the relationship between principal ideal domains and unique factorization domains. No proofs are necessary.
(b) Prove that there are only finitely many ideals J in R that contain I.

Problem 3. Give examples of sequences of functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the indicated convergence conditions. In each case write down the function $f_{n}(x)$ and also the limit $f(x)$. If your functions are simple enough (for example, piecewise linear), you may simply draw their graphs, carefully indicating relevant coordinates, rather than writing down definitions. No proofs are necessary.
(a) $f_{n} \rightarrow f$ pointwise, but not uniformly or in the L^{2} norm.
(b) $f_{n} \rightarrow f$ in the L^{2} norm, but not pointwise or uniformly.
(c) $f_{n} \rightarrow f$ pointwise, all of the f_{n} 's continuous, but f not continuous.
(d) $f_{n} \rightarrow f$ pointwise, all of the f_{n} 's integrable, but f not integrable.
(e) $f_{n} \rightarrow f$ uniformly, all of the f_{n} 's and f integrable, but

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} f_{n}(x) d x \neq \int_{-\infty}^{\infty} f(x) d x
$$

Problem 4. All matrices in this problem have real coefficients and size $n \times n$.
It is well-known that a positive definite symmetric matrix A has a square root Q in the sense that

$$
A=Q Q^{T}
$$

Use this fact to show that if A and B are positive definite symmetric matrices then the eigenvalues of $A B$ are real and positive.

Problem 5. Let L be the intersection of the disks $|z|<1$ and $|z-1|<1$ on the complex plane. Let $f: L \rightarrow H$ be a one-to-one analytic mapping from this lens-shaped region onto the upper half-plane H.
(a) Explain why f can not be a Möbius transformation

$$
f(z)=\frac{a z+b}{c z+d} \quad \text { for some } a, b, c, d \in \mathbb{C} .
$$

(b) Find an f as a composition of a Möbius transformation and a power map $z \mapsto z^{\alpha}$ for an appropriate α.

Problem 6. Factor the polynomial $x^{3}-3 x+3$ and find the Galois group of its splitting field if the ground field is
(a) \mathbb{R}. (You don't need to find the exact value of the $\operatorname{root}(\mathrm{s})$.)
(b) \mathbb{Q}.

