Spring 2007 Pure Math Qualifying Exam, Part 1.

1. If $A=\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$, how many matrices commute with A and have eigenvalues $2,3,4$?
2. Assume that a and b are positive real numbers. Evaluate the following integral:

$$
\int_{0}^{\infty} \frac{\sin (a x)}{x\left(x^{2}+b^{2}\right)} d x
$$

3. If f is continuous on $[0,1]$ and $f(0)=1$, for what real numbers $r \geq 0$ does the limit

$$
\lim _{n \rightarrow \infty} n^{r} \int_{0}^{1} e^{-n t} f(t) d t
$$

exist, and what is its value when it does?
4. Show that $\cos \frac{\pi}{12} \in \mathbb{Q}[\sqrt{2}+\sqrt{3}]$.
5. Let U and V be domains in \mathbb{C}. The Beltrami differential of a diffeomor$\operatorname{phism} \phi: U \rightarrow V$ is $\mu(\phi)=\phi_{\bar{z}} / \phi_{z}=\frac{\phi_{x}+i \phi_{y}}{\phi_{x}-i \phi_{y}}$. Define a relation on diffeomorphisms from U to V by: $\phi_{1} \sim \phi_{2}$ iff $\phi_{1}^{-1} \phi_{2}$ is complex analytic. Show that this is an equivalence relation. Show that $\phi_{1} \sim \phi_{2}$ iff $\mu\left(\phi_{1}\right)=\mu\left(\phi_{2}\right)$.
6. Determine all groups of order 21 up to isomorphism.

Spring 2007 Pure Math Qualifying Exam, Part 2.

1. What is the radius of convergence of the power series for $\sqrt{2-e^{z}}$ around $z=1+4 i$?
2. Find the maximum value of

$$
\frac{x(1-x)(1-y)}{1-x y}
$$

in the domain $(x, y) \in[0,1]^{2}$. Give the values of x, y where the maximum is achieved.
3. Prove Stirling's approximation $n!=n^{n} e^{-n} \sqrt{n} e^{O(1)}$. That is, show that the ratio of $n!$ and $n^{n} e^{-n} n^{1 / 2}$ is bounded between two positive constants, for n big enough. (Hint: one way is to take logs of both sides and use an integral approximation for $\log n!$).
4. Find all integers n such that $x^{5}-n x-1$ is irreducible over \mathbb{Q}.
5. Let G be the abelian group defined by generators x, y, and z, and relations

$$
\begin{aligned}
15 x+3 y & =0 \\
3 x+7 y+4 z & =0 \\
18 x+14 y+8 z & =0
\end{aligned}
$$

(a) Express G as a direct product of two cyclic groups.
(b) Express G as a direct product of cyclic groups of prime power order.
(c) How many elements of G have order 2?
6. Show that for each $n=1,2, \ldots$ there is a unique polynomial $P_{n}(x)$ of degree n satisfying

$$
\int_{x}^{x+1} P_{n}(t) d t=x^{n}
$$

for all x. Compute $P_{1}(x)$ and $P_{2}(x)$.

