Winter 2008, Pure Qualifying Exam

Part 1

1. Suppose $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence of non-negative real numbers and that $\sum_{n=1}^{\infty} a_{n}$ converges. Show that $\sum_{n=1}^{\infty} \frac{\sqrt{a_{n}}}{n}$ converges.
2. The periodic function $f(x)$ is defined by

$$
f(x)=e^{x}, \quad \text { for }-\pi \leq x \leq \pi \text { and } f(x+2 \pi)=f(x)
$$

Find the Fourier series representation of $f(x)$. Check whether the series can be differentiated to give the familiar result,

$$
\frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

Relate your results to the continuity properties of $f(x)$.
3. (a) State the divergence theorem, and use it to evaluate the integral,

$$
\iint_{S} \mathbf{u} \cdot \mathbf{n} d s
$$

where

$$
\mathbf{u}=\left(x z^{2}, \sin x, y\right)
$$

and S is the closed surface of the cylinder bounded by

$$
x^{2}+y^{2}=1, z=0, z=2
$$

What would the result have been had $\mathbf{u}=\nabla \times \mathbf{a}$ for any differentiable vector field $\mathbf{a}(\mathbf{x})$?
(b) State Stokes' theorem, and use it to evaluate the integral

$$
\int_{C} \mathbf{u} \cdot \mathrm{~d} \mathbf{r}
$$

where C is the unit circle $x^{2}+y^{2}=1$, directed in an anticlockwise sense, and

$$
\mathbf{u}=(\cos x, 2 x+y \sin y, x)
$$

What would the result have been had $\mathbf{u}=\nabla \phi$ for any differentiable scalar field, $\phi(\mathbf{x})$?
4. (i) Prove that an orthogonal set of vectors $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{n}}\right\}$ in an n-dimensional Euclidean space is linearly independent.
(ii) Let V be a subspace of \Re^{4} spanned by the vectors,

$$
\mathbf{u}_{1}=\left(\begin{array}{c}
0 \\
1 \\
1 \\
0
\end{array}\right), \quad \mathbf{u}_{2}=\left(\begin{array}{c}
1 \\
0 \\
1 \\
1
\end{array}\right), \quad \mathbf{u}_{3}=\left(\begin{array}{c}
1 \\
1 \\
0 \\
2
\end{array}\right)
$$

Using the Gram-Schmidt procedure, construct an orthogonal basis for V.
(iii) Consider the vector space formed by all polynomials, $P_{n}(x)$ with $-1 \leq x \leq 1$, of degree less than or equal to n. Consider the inner product,

$$
\langle p(x), q(x)\rangle=\int_{-1}^{1} p(x) q(x) d x
$$

Determine the quadratic polynomial, $P_{2}(x)$, which is normalized so that $P_{2}(0)=1$ and is orthogonal to both polynomials $P_{0}(x)=1$ and $P_{1}(x)=x$.
5. (i) Define a Hermitian matrix, and prove that all of its eigenvalues are real, and that the eigenvectors corresponding to distinct eigenvalues are orthognal.
(ii) Find a matrix P such that $P^{-1} A P$ is diagonal, where

$$
A=\left(\begin{array}{ccc}
3 & 3 & 2 \\
2 & 4 & 2 \\
-1 & -3 & 0
\end{array}\right)
$$

6. Let A be an $n \times m$ matrix. Prove that the equation $A x=b$ has a solution if and only if $\langle b, v\rangle=0$ for all v in the nullspace of A^{*}.

Part 2

1. Using contour integration, find the definite integrals

$$
\text { (a) } \quad \int_{0}^{\infty} \frac{\ln x}{x^{2}+1} d x
$$

and

$$
\text { (b) } \quad \int_{-\infty}^{\infty} \frac{e^{i k x}}{\cosh x} d x
$$

with k a parameter (Hint: for (b) use a rectangular contour).
2. Find all possible Laurent expansions of

$$
\frac{1}{(2+z)\left(z^{2}+1\right)}
$$

about $z=0$.
3. Consider the annular region, D, given by $\frac{1}{5} \leq|z| \leq 1$.
(i) Show that

$$
\phi(z)=2+\frac{\ln |z|}{\ln 5}
$$

is harmonic in D.
(ii) Show that

$$
w=f(z)=\frac{3 z+1}{3+z}
$$

is a conformal mapping of D. Show that the image, E, of D in the w-plane is bounded by two non-concentric circles, C_{1} and C_{2}, with C_{1} contained inside C_{2}.
(iii) Suppose that $\Phi(w)$ is harmonic on E such that $\Phi=2$ on C_{2} and $\Phi=1$ on C_{1}. Find $\Phi(w)$.
4. Show that a unique factorization domain is a principal ideal domain if and only if every non-zero prime ideal is maximal.
5. Let F be a field and let α_{i} be elements of f. Suppose that $f(x)=\prod_{i=1}^{n}\left(x-\alpha_{i}\right) \in F[x]$ is a polynomial. Recall that the discriminant of f is

$$
D(f)=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

(i) Suppose $f(x)=x^{3}+a x+b \in F[x]$. Show that

$$
D(f)=-4 a^{3}-27 b^{2}
$$

(Hint: When viewed as a function of the α_{i}, D is homogeneous.)
(ii) Show that the polynomial

$$
f(x)=x^{3}-48 x+64
$$

is irreducible over \mathbb{Q}.
(iii) Compute the Galois group over \mathbb{Q} of $x^{3}-48 x+64$.
6. Let G be a finite group and let H be proper subgroup. Show that G is not equal to the union of the conjugates of H.

