UBC Math Qualifying Exam January 9th 2010: Morning Exam, 9am-12pm PURE and APPLIED exam

Solve all six problems, and start each problem on a new page.

1. Prove or disprove: The series

$$
\sum_{n=1}^{\infty} \frac{\sin x}{1+n^{2} x^{2}}
$$

converges uniformly on $[-\pi, \pi]$.
2. Let $Q=\{0<x<1,0<y<1\}$. For what values of a, b is the function

$$
x^{a} y^{b} \int_{0}^{\infty} \frac{1}{(x+t)\left(y^{2}+t^{2}\right)} d t
$$

bounded on Q ?
3. (a) Does $p_{N}=\prod_{n=2}^{N}\left(1+\frac{(-1)^{n}}{n}\right)$ converge to a nonzero limit as $N \rightarrow \infty$? Explain your answer!
(b) Prove that $\int_{0}^{\infty} \cos \left(t^{2}\right) d t$ converges.
4. Let $f(z)=\int_{0}^{\infty} e^{-z t^{2}} d t$.
(a) Show that $f(z)$ is analytic in the domain $\operatorname{Re}(z)>0$.
(b) Assume that $f(1)=\frac{1}{2} \sqrt{\pi}$. Find the analytic continuation of $f(z)$ into the domain $\mathbb{C} \sim(-\infty, 0]$. This is the domain that is the whole complex plane except the negative real axis and zero. [Hint: compute $f(x)$ for $x>0$.]
(c) Let $F(z)$ denote the analytic continuation of $f(z)$ from part (b). Evaluate $F(i)$.
(d) Evaluate $\int_{0}^{\infty} \cos \left(t^{2}\right) d t$.
5. Calculate the following integrals:
(a)

$$
\int_{C}(\bar{z})^{2} d z
$$

where C is the circle $|z+1|=4$, oriented counterclockwise.
(b)

$$
\int_{C} z \sin \left(z^{-1}\right) d z
$$

where C is the circle $|z|=100$, oriented counterclockwise.
(c)

$$
\int_{C} \frac{\sin 3 z}{(z-1)^{4}} d z
$$

where C is the circle $|z|=2$, oriented counterclockwise.
6.

$$
J=\int_{0}^{\infty} \frac{(\ln x)^{2}}{x^{2}+9} d x
$$

Evaluate J, explaining all steps and calculations carefully.

UBC Math Qualifying Exam January 9th 2010: Afternoon Exam, 1pm-4pm APPLIED exam

Solve all seven problems, and start each problem on a new page.

1. Let \mathbf{x} be a unit vector in \mathbb{R}^{n} and let $A=I-\beta \mathbf{x x}^{T}$.
(a) Show that A is symmetric.
(b) Find all values of β for which A is orthogonal.
(c) Find all values of β for which A is invertible.
2. Let U and W be subspaces of a finite-dimensional vector space V.

Show that $\operatorname{dim} U+\operatorname{dim} W=\operatorname{dim}(U \cap W)+\operatorname{dim}(U+W)$.
3. If A and B are real symmetric n-by- n matrices with all eigenvalues positive, show that $A+B$ has the same property.
4. Show that any two commuting matrices with complex entries share a common eigenvector.
5. Consider the ODE given by $x^{2}\left(1-x^{2}\right) y^{\prime \prime}+2 x(1-x) y^{\prime}-y=0$.
(a) Find and classify the finite singular points of the ODE.
(b) Find the form of a general series solution of the ODE about $x=\frac{1}{2}$. (Do not evaluate the coefficients but do indicate which are arbitrary.)
(c) For which values of x would the series solution of (b) converge absolutely?
(d) Find the form of a general series solution of the ODE valid near $x=0$. (Do not evaluate the coefficients but do indicate which are arbitrary.)
(e) For which values of x would the series solution of (d) converge absolutely?
6. Consider the Frenet-Serret formulas for a space curve $\mathbf{r}(s)$ given by the system of differential equations

$$
\begin{aligned}
\frac{d \mathbf{T}}{d s} & =\kappa(s) \mathbf{N} \\
\frac{d \mathbf{N}}{d s} & =-\kappa(s) \mathbf{T}+\tau(\mathbf{s}) \mathbf{B} \\
\frac{d \mathbf{B}}{d s} & =-\tau(s) \mathbf{N}
\end{aligned}
$$

$\mathbf{T}=d \mathbf{r} / d s$ is the tangent to the curve and \mathbf{N} and \mathbf{B} are unit vectors. Show that $\mathbf{r}(s)$ lies on a circular path if and only if $\kappa(s)=$ constant $=K, \tau(s)=0$. Find the radius of the circular path.
7. Suppose $K(x, \xi, t, \tau)$ satisfies

$$
\begin{aligned}
K_{t}-K_{x x} & =\delta(x-\xi) \delta(t-\tau), \quad 0<x, \xi<1, \quad t>0 \\
K(x, \xi, 0, \tau) & =0 \\
K_{x}(0, \xi, t, \tau) & =K_{x}(1, \xi, t, \tau)=0 .
\end{aligned}
$$

(a) Find $K(x, \xi, t, \tau)$.
(b) In terms of $K(x, \xi, t, \tau)$ and given data $\{F(x, t), f(x), h(t), k(t)\}$, find the solution $u(x, t)$ of the boundary value problem given by

$$
\begin{aligned}
& u_{t}-u_{x x}=F(x, t), \quad 0<x<1, \quad t>0 \\
& u(x, 0)=f(x), \quad 0 \leq x \leq 1 \\
& u_{x}(0, t)=h(t), \quad u_{x}(1, t)=k(t), \quad t>0
\end{aligned}
$$

(c) In terms of $K(x, \xi, t, \tau)$ found in (a), is your solution $u(x, t)$ useful for large or small times t ? Explain your answer.

