UBC Math Qualifying Exam January 9th 2010: Morning Exam, 9am-12pm PURE and APPLIED exam

Solve all six problems, and start each problem on a new page.

1. Prove or disprove: The series

$$
\sum_{n=1}^{\infty} \frac{\sin x}{1+n^{2} x^{2}}
$$

converges uniformly on $[-\pi, \pi]$.
2. Let $Q=\{0<x<1,0<y<1\}$. For what values of a, b is the function

$$
x^{a} y^{b} \int_{0}^{\infty} \frac{1}{(x+t)\left(y^{2}+t^{2}\right)} d t
$$

bounded on Q ?
3. (a) Does $p_{N}=\prod_{n=2}^{N}\left(1+\frac{(-1)^{n}}{n}\right)$ converge to a nonzero limit as $N \rightarrow \infty$? Explain your answer!
(b) Prove that $\int_{0}^{\infty} \cos \left(t^{2}\right) d t$ converges.
4. Let $f(z)=\int_{0}^{\infty} e^{-z t^{2}} d t$.
(a) Show that $f(z)$ is analytic in the domain $\operatorname{Re}(z)>0$.
(b) Assume that $f(1)=\frac{1}{2} \sqrt{\pi}$. Find the analytic continuation of $f(z)$ into the domain $\mathbb{C} \sim(-\infty, 0]$. This is the domain that is the whole complex plane except the negative real axis and zero. [Hint: compute $f(x)$ for $x>0$.]
(c) Let $F(z)$ denote the analytic continuation of $f(z)$ from part (b). Evaluate $F(i)$.
(d) Evaluate $\int_{0}^{\infty} \cos \left(t^{2}\right) d t$.
5. Calculate the following integrals:
(a)

$$
\int_{C}(\bar{z})^{2} d z
$$

where C is the circle $|z+1|=4$, oriented counterclockwise.
(b)

$$
\int_{C} z \sin \left(z^{-1}\right) d z
$$

where C is the circle $|z|=100$, oriented counterclockwise.
(c)

$$
\int_{C} \frac{\sin 3 z}{(z-1)^{4}} d z
$$

where C is the circle $|z|=2$, oriented counterclockwise.
6.

$$
J=\int_{0}^{\infty} \frac{(\ln x)^{2}}{x^{2}+9} d x
$$

Evaluate J, explaining all steps and calculations carefully.

UBC Math Qualifying Exam January 9th 2010: Afternoon Exam, 1pm-4pm PURE exam

Solve all eight problems, and start each problem on a new page.

1. Let \mathbf{x} be a unit vector in \mathbb{R}^{n} and let $A=I-\beta \mathbf{x x}^{T}$.
(a) Show that A is symmetric.
(b) Find all values of β for which A is orthogonal.
(c) Find all values of β for which A is invertible.
2. Let U and W be subspaces of a finite-dimensional vector space V.

Show that $\operatorname{dim} U+\operatorname{dim} W=\operatorname{dim}(U \cap W)+\operatorname{dim}(U+W)$.
3. If A and B are real symmetric n-by- n matrices with all eigenvalues positive, show that $A+B$ has the same property.
4. Show that any two commuting matrices with complex entries share a common eigenvector.
5. Find a cubic polynomial $P(x)$ with integer coefficients such that $P\left(2 \cos \left(40^{\circ}\right)\right)=0$, and then find the Galois group of $P(x)$.
6. Show that every group of order 15 is cyclic.
7. The ring R of Gaussian integers consists of all complex numbers of the form $a+b i$, where a and b are integers. Find a factorization of 143 into a product of 3 primes in R.
8. Let $K=\mathbb{Q}(x)$, the field of rational functions in one variable x. Let $k=\mathbb{Q}(y)$, the field of rational functions of y, where $y=x^{2}(1+x)^{2} /\left(1+x+x^{2}\right)^{3}$, so that k is a subfield of K. Let W be the group of automorphisms of K generated by α and β, where $\alpha(x)=1 / x$ and $\beta(x)=-1-x$. Show that an element of K which is fixed by every element of W must be an element of k.

