UBC Math Qualifying Exam January 9th 2010: Morning Exam, 9am-12pm PURE and APPLIED exam

Solve all six problems, and start each problem on a new page.

1. Prove or disprove: The series

$$\sum_{n=1}^{\infty} \frac{\sin x}{1 + n^2 x^2}$$

converges uniformly on $[-\pi, \pi]$.

2. Let $Q = \{0 < x < 1, 0 < y < 1\}$. For what values of a, b is the function

$$x^{a}y^{b}\int_{0}^{\infty}\frac{1}{(x+t)(y^{2}+t^{2})} dt$$

bounded on Q?

- 3. (a) Does $p_N = \prod_{n=2}^N (1 + \frac{(-1)^n}{n})$ converge to a nonzero limit as $N \to \infty$? Explain your answer!
 - (b) Prove that $\int_0^\infty \cos(t^2) dt$ converges.
- 4. Let $f(z) = \int_0^\infty e^{-zt^2} dt$.
 - (a) Show that f(z) is analytic in the domain $\operatorname{Re}(z) > 0$.
 - (b) Assume that $f(1) = \frac{1}{2}\sqrt{\pi}$. Find the analytic continuation of f(z) into the domain $\mathbb{C} \sim (-\infty, 0]$. This is the domain that is the whole complex plane except the negative real axis and zero. [Hint: compute f(x) for x > 0.]
 - (c) Let F(z) denote the analytic continuation of f(z) from part (b). Evaluate F(i).
 - (d) Evaluate $\int_0^\infty \cos(t^2) dt$.
- 5. Calculate the following integrals:

(a)

$$\int_C (\bar{z})^2 \, dz$$

where C is the circle |z + 1| = 4, oriented counterclockwise.

(b)

$$\int_C z \sin(z^{-1}) dz$$

where C is the circle |z| = 100, oriented counterclockwise.

(c)

$$\int_C \frac{\sin 3z}{(z-1)^4} dz$$

where C is the circle |z| = 2, oriented counterclockwise.

6.

$$J = \int_0^\infty \frac{(\ln x)^2}{x^2 + 9} \, dx.$$

Evaluate J, explaining all steps and calculations carefully.

UBC Math Qualifying Exam January 9th 2010: Afternoon Exam, 1pm-4pm PURE exam

Solve all eight problems, and start each problem on a new page.

- 1. Let **x** be a unit vector in \mathbb{R}^n and let $A = I \beta \mathbf{x} \mathbf{x}^T$.
 - (a) Show that A is symmetric.
 - (b) Find all values of β for which A is orthogonal.
 - (c) Find all values of β for which A is invertible.
- 2. Let U and W be subspaces of a finite-dimensional vector space V. Show that $\dim U + \dim W = \dim(U \cap W) + \dim(U + W)$.
- 3. If A and B are real symmetric n-by-n matrices with all eigenvalues positive, show that A + B has the same property.
- 4. Show that any two commuting matrices with complex entries share a common eigenvector.
- 5. Find a cubic polynomial P(x) with integer coefficients such that $P(2\cos(40^\circ)) = 0$, and then find the Galois group of P(x).
- 6. Show that every group of order 15 is cyclic.
- 7. The ring R of Gaussian integers consists of all complex numbers of the form a + bi, where a and b are integers. Find a factorization of 143 into a product of 3 primes in R.
- 8. Let $K = \mathbb{Q}(x)$, the field of rational functions in one variable x. Let $k = \mathbb{Q}(y)$, the field of rational functions of y, where $y = x^2(1+x)^2/(1+x+x^2)^3$, so that k is a subfield of K. Let W be the group of automorphisms of K generated by α and β , where $\alpha(x) = 1/x$ and $\beta(x) = -1 x$. Show that an element of K which is fixed by every element of W must be an element of k.