Mathematics Qualifying Exam

University of British Columbia
January 8, 2011

Part I: Real and Complex Analysis (Pure and Applied Exam)

1. Assume that $f:[0,1] \rightarrow \mathbb{R}$ is a smooth function. Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) e^{i n x^{3}} d x=0
$$

2. a) Assume $f(x)$ is a strictly increasing continuous function with $f(0)=0$ and with inverse f^{-1}. Show that

$$
\int_{0}^{a} f(x) d x+\int_{0}^{b} f^{-1}(x) d x \geq a b
$$

for any two positive real numbers a and b. For what b does the equality hold?
b) Use this to prove Young's inequality, which states that if p and q are positive real numbers such that $\frac{1}{p}+\frac{1}{q}=1$ then

$$
\frac{a^{p}}{p}+\frac{b^{q}}{q} \geq a b
$$

3. a) Find a counter example to the following statement:

If $f_{n}(x)$ for $n>0$ is a sequence of continuous real-valued functions on the unit interval $[0,1]$ such that $\lim _{n \rightarrow \infty} f_{n}(x)=0$ for all x. Then

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=0
$$

b) Find a minimal extra condition that can not be simplified, which makes this statement true.
4. Use a contour integral to evaluate

$$
\int_{0}^{\infty} \frac{d x}{1+x^{2 n}}, \quad n \geq 1
$$

5. a) Show by contour integration that

$$
\int_{0}^{2 \pi} \frac{d \theta}{x+\cos \theta}=\frac{2 \pi}{\sqrt{x^{2}-1}}, \quad \text { if } x>1
$$

b) Determine for which complex values of w, the function $f(w)$ defined as

$$
f(w)=\int_{0}^{2 \pi} \frac{d \theta}{w+\cos \theta}
$$

is analytic. Evaluate the integral for those w. Simplify your answer as much as possible. Justify your reasoning with all details.
6. Consider the meromorphic function

$$
f(z)=\frac{1-z^{2}}{2 i\left(z^{2}-\left(a+\frac{1}{a}\right) z+1\right)}, \quad|a|<1
$$

Find the Laurent series expansion for $f(z)$ valid in a neighborhood of the unit circle $|z|=1$.

Mathematics Qualifying Exam
 University of British Columbia
 January 8, 2011

Part II: Linear Algebra and Algebra (Pure Exam)

1. a) Over the vector space \mathcal{P} of all polynomials we consider the inner product

$$
\langle P, Q\rangle=\int_{0}^{1} P(x) Q(x) d x
$$

Find a polynomial of degree 2 that is orthogonal to $P_{0}(x)=1$ and $P_{1}(x)=x$.
b) Let now \mathcal{P}_{n} be the vector space of the polynomials of degree less or equal than n. Consider the linear mapping $\mathcal{F}: \mathcal{P}_{n} \rightarrow \mathcal{P}_{n}$ defined by

$$
\mathcal{F}(P)(x)=(x-1) P^{\prime}(x)
$$

for $P \in \mathcal{P}_{n}$. Find the matrix F that describes \mathcal{F} with respect to the basis $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$.
2. Let A be an $n \times n$ matrix with real coefficients. Show the following:
a) If the sum of the elements in each of the columns of A is 1 , then $\lambda=1$ is an eigenvalue of A.
b) If A is invertible and v is an eigenvector of A, then v is also an eigenvector of both A^{2} and A^{-2}. What are the corresponding eigenvalues?
c) If $A B=B A$ for all invertible matrices B, then $A=c I$ for some scalar c.
3. a) Let A be an $n \times m$ matrix with real coefficients. Let v_{i} denote the i-th row of A, and let B be the matrix obtained from A by the elementary row operation which replaces v_{j} with $v_{j}-a v_{i}$, for $a \in \mathbb{R}$ and $i \neq j$. Thus the rows w_{i} of B are given by $w_{i}=v_{i}$ if $i \neq j$, and $w_{j}=v_{j}-a v_{i}$. Then show that there exists an invertible $n \times n$ matrix E such that $B=E A$.
b) Use part a) to show that the rank of the row space of A is equal to the rank of the column space of A.

Please turn over

4. a) Let K be a field and let $f(X), g(X)$ be monic irreducible polynomials with coefficients in K. Suppose there exists an extension L / K and an element $\alpha \in L$ such that $f(\alpha)=$ $g(\alpha)=0$. Then show that $f=g$.
b) Let $f(X)=X^{n}+a_{n-1} X^{n-1}+\ldots a_{0}$ be a monic polynomial with rational integer coefficients. Suppose there exists a rational number α with $f(\alpha)=0$. Then show that α is a rational integer.
c) Show that the polynomial $X^{4}+1$ is irreducible in $\mathbf{Q}[X]$.
d) Find the Galois group over \mathbf{Q} of the polynomial $X^{3}-2$.
5. a) Let R be a commutative ring (with identity element) and let I and J be ideals of R. Show that the set $I+J=\{i+j \mid i \in I, j \in J\}$ is an ideal of R.
b) With the notations of part a), suppose that $I+J=R$. Then show that $R / I J$ is isomorphic to $R / I \oplus R / J$.
6. a) Let G be a finite group. If $x \in G$, let G_{x} denote the set of elements in G that are conjugate to x, namely, $z \in G_{x} \Longleftrightarrow \exists y \in G$ with $y x y^{-1}=z$. Show that the cardinality of the set G_{x} divides the order of G.
b) If the group G has order p^{r} where p is a prime, then show that there exists some $x \neq 1 \in G$ such that $G_{x}=\{x\}$.
