Mathematics Qualifying Exam
 University of British Columbia
 January 14, 2012

Part I: Real and Complex Analysis (Pure and Applied Exam)

1. (a) Find all polynomials that are uniformly continuous on \mathbb{R}.
(b) Let A be a nonempty subset of \mathbb{R} and let f be a real-valued function defined on A. Further let $\left\{f_{n}\right\}$ be a sequence of bounded functions on A which converge uniformly to f. Prove that

$$
\frac{f_{1}(x)+\cdots+f_{n}(x)}{n} \rightarrow f(x)
$$

uniformly on A as $n \rightarrow \infty$.
2. (a) Prove the Logarithmic Test

Theorem 1. Suppose that $a_{k} \neq 0$ for large k and that

$$
p=\lim _{k \rightarrow \infty} \frac{\log \left(1 /\left|a_{k}\right|\right)}{\log k} \text { exists. }
$$

- If $p>1$ then $\sum_{k=1}^{\infty} a_{k}$ converges absolutely, and
- If $p<1$ then $\sum_{k=1}^{\infty}\left|a_{k}\right|$ diverges.
(b) Let $\left\{a_{k}\right\}$ be a sequence of non-zero real numbers and suppose that

$$
p=\lim _{k \rightarrow \infty} k\left(1-\left|\frac{a_{k+1}}{a_{k}}\right|\right) \text { exists }
$$

Prove that $\sum_{k=1}^{\infty} a_{k}$ converges absolutely when $p>1$.
3. Evaluate the integral

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} \sigma
$$

where S is the region of the plane $y=z$ lying inside the unit ball centred at the origin, and $\mathbf{F}=(x y, x z,-y z)$, and \mathbf{n} is the upward-pointing normal.
Note that it might be helpful to remember that

$$
\int 2 \sin ^{2} t \mathrm{~d} t=t-\sin t \cos t
$$

4. In the following, justify your answer.
(a) (6 points) Prove or disprove:

There exists a holomorphic function f on \mathbb{C} (thus an entire function) such that $f(D)=Q$ where D is the unit disk $D=\{z \in \mathbb{C}| | z \mid<1\}$ and Q is the square $Q=\{z \in \mathbb{C} \mid-1<\operatorname{Re} z, \operatorname{Im} z<1\}$.
(b) (7 points) Find all holomorphic functions $f(z)$ on $\mathbb{C} \backslash\{0\}$ such that

$$
f(1)=1, \quad|f(z)| \leq \frac{1}{|z|^{3}}
$$

(c) (7 points) Find a holomorphic function $f(z)$ on $D=\{z \in \mathbb{C}| | z \mid<1\}$, which maps D onto the infinite sector

$$
S=\left\{z=r e^{i \theta} \in \mathbb{C} \mid 0<\theta<\pi / 4\right\} .
$$

5. (a) (6 points) Prove or disprove:

There exists a nonconstant holomorphic function $f(z)$ from $D=\{z \in \mathbb{C}| | z \mid<1\}$ into \mathbb{C} such that the area of its image, area $f(D)=0$.
(b) (7 points) Show that there is no holomorphic function $f(z)$ on $D=\{z \in \mathbb{C}| | z \mid<1\}$ such that $|f(z)|=|z|^{1 / 2}$ for all $z \in D$.
(c) (7 points) Find all harmonic functions $u(x, y)$ on \mathbb{R}^{2} such that $e^{u(x, y)} \leq 10+\left(x^{2}+y^{2}\right)$ and $u(1,1)=0$.
6. (20 points) Evaluate the following integral, using contour integration, carefully justifying each step:

$$
\int_{0}^{\infty} \frac{\log x}{\left(1+x^{2}\right)^{2}} d x
$$

Linear Algebra

1. Determine the eigenvalues and a basis of the corresponding eigenspaces for the linear map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by the matrix \mathbf{A} with respect to the standard basis, where:

$$
\mathbf{A}=\left(\begin{array}{lll}
5 & 4 & 2 \\
4 & 5 & 2 \\
2 & 2 & 2
\end{array}\right)
$$

Note: all eigenvalues are rational numbers.
2. Let $\mathcal{N}_{n} \subset M_{n}(\mathbb{R})$ be the set of nilpotent matrices, that is the set of $n \times n$ matrices A such that $A^{k}=0$ for some k. Show that \mathcal{N}_{n} is a closed subset of $M_{n}(\mathbb{R})$ (identify the latter with $\mathbb{R}^{n^{2}}$).
3. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map.
(a) Show that there is a unique integer $0 \leq k \leq \min \{n, m\}$ for which there are bases $\left\{\underline{u}_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{n}$ $\left\{\underline{v}_{i}\right\}_{i=1}^{m} \subset \mathbb{R}^{m}$ such that the matrix of T with respect to these bases is $D^{(k)}$, where

$$
D^{(k)}= \begin{cases}1 & 1 \leq i=j \leq k \\ 0 & \text { otherewise }\end{cases}
$$

that is $D^{(k)}$ has zeroes everywhere except that the first k entries on the main diagonal are 1.
(b) Show that the row rank and column rank of any matrix $A \in M_{m, n}(\mathbb{R})$ are equal.

Differential Equations

1. Consider the differential equation

$$
4 x^{2} \frac{d^{2} y}{d x^{2}}+y=0
$$

(a) For $x>0$ find all solutions $y(x)$.
(Hint: look for solutions of the form $y(x)=\sqrt{x} f(x)$.)
(b) Determine $y(x)$ in the limit $x \rightarrow+0$.
2. The following system of differential equations:

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=2 x_{1}-x_{2}+t \\
& \frac{d x_{2}}{d t}=3 x_{1}-2 x_{2}
\end{aligned}
$$

has a linear solution. Determine the set of all solutions $\left(x_{1}(t), x_{2}(t)\right)$.
3. Consider the initial value problem

$$
\begin{aligned}
& u_{t t}-u_{x x}=f(x) \cos t \\
& u(x, 0)=0, \quad u_{t}(x, 0)=0, \quad-\infty<x<\infty, 0 \leq t<\infty
\end{aligned}
$$

for a continuous function $f(x)$ on \mathbb{R}, which vanishes for $|x|>R$.
(a) Solve the initial value problem.

Note: The solution is of the form $u(x, t)=u_{p}(x, t)+u_{h}(x, t)$. Use separation of variables to find a particular solution $u_{p}(x, t)$ of $u_{t t}-u_{x x}=f(x) \cos t$ (ignoring the initial values). Then, $u_{h}(x, t)$ is a solution to the homogenous PDE with appropriately adjusted initial conditions.
(b) The particular solution $u_{p}(x, t)$ is not unique. Because of that it is not obvious whether the solution $u(x, t)$ is unique. Prove that it is.

