Mathematics Qualifying Exam University of British Columbia January 14, 2012

Part I: Real and Complex Analysis (Pure and Applied Exam)

- 1. (a) Find all polynomials that are uniformly continuous on \mathbb{R} .
 - (b) Let A be a nonempty subset of \mathbb{R} and let f be a real-valued function defined on A. Further let $\{f_n\}$ be a sequence of bounded functions on A which converge uniformly to f. Prove that

$$\frac{f_1(x) + \dots + f_n(x)}{n} \to f(x)$$

uniformly on A as $n \to \infty$.

2. (a) Prove the Logarithmic Test **Theorem 1.** Suppose that $a_k \neq 0$ for large k and that

$$p = \lim_{k \to \infty} \frac{\log(1/|a_k|)}{\log k} \ exists.$$

- If p > 1 then ∑_{k=1}[∞] a_k converges absolutely, and
 If p < 1 then ∑_{k=1}[∞] |a_k| diverges.
- (b) Let $\{a_k\}$ be a sequence of non-zero real numbers and suppose that

$$p = \lim_{k \to \infty} k \left(1 - \left| \frac{a_{k+1}}{a_k} \right| \right) \text{ exists}$$

Prove that $\sum_{k=1}^{\infty} a_k$ converges absolutely when p > 1.

3. Evaluate the integral

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \mathrm{d}\sigma,$$

where S is the region of the plane y = z lying inside the unit ball centred at the origin, and $\mathbf{F} = (xy, xz, -yz)$, and **n** is the upward-pointing normal.

Note that it might be helpful to remember that

$$\int 2\sin^2 t \mathrm{d}t = t - \sin t \cos t.$$

- 4. In the following, justify your answer.
 - (a) (6 points) Prove or disprove:

There exists a holomorphic function f on \mathbb{C} (thus an entire function) such that f(D) = Q where D is the unit disk $D = \{z \in \mathbb{C} \mid |z| < 1\}$ and Q is the square $Q = \{z \in \mathbb{C} \mid -1 < \operatorname{Re} z, \operatorname{Im} z < 1\}$.

(b) (7 points) Find all holomorphic functions f(z) on $\mathbb{C} \setminus \{0\}$ such that

$$f(1) = 1, \qquad |f(z)| \le \frac{1}{|z|^3}$$

(c) (7 points) Find a holomorphic function f(z) on $D = \{z \in \mathbb{C} \mid |z| < 1\}$, which maps D onto the infinite sector

$$S = \{ z = re^{i\theta} \in \mathbb{C} \mid 0 < \theta < \pi/4 \}.$$

- 5. (a) (6 points) Prove or disprove: There exists a **nonconstant** holomorphic function f(z) from $D = \{z \in \mathbb{C} \mid |z| < 1\}$ into \mathbb{C} such that the area of its image, area f(D) = 0.
 - (b) (7 points) Show that there is **no** holomorphic function f(z) on $D = \{z \in \mathbb{C} \mid |z| < 1\}$ such that $|f(z)| = |z|^{1/2}$ for all $z \in D$.
 - (c) (7 points) Find all harmonic functions u(x, y) on \mathbb{R}^2 such that $e^{u(x,y)} \leq 10 + (x^2 + y^2)$ and u(1, 1) = 0.
- 6. (20 points) Evaluate the following integral, using contour integration, carefully justifying each step:

$$\int_0^\infty \frac{\log x}{(1+x^2)^2} dx$$

Linear Algebra

1. Determine the eigenvalues and a basis of the corresponding eigenspaces for the linear map $f : \mathbb{R}^3 \to \mathbb{R}^3$ given by the matrix **A** with respect to the standard basis, where:

$$\mathbf{A} = \begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix}.$$

Note: all eigenvalues are rational numbers.

- 2. Let $\mathcal{N}_n \subset M_n(\mathbb{R})$ be the set of *nilpotent* matrices, that is the set of $n \times n$ matrices A such that $A^k = 0$ for some k. Show that \mathcal{N}_n is a closed subset of $M_n(\mathbb{R})$ (identify the latter with \mathbb{R}^{n^2}).
- 3. Let $T \colon \mathbb{R}^n \to \mathbb{R}^m$ be a linear map.
 - (a) Show that there is a unique integer $0 \le k \le \min\{n, m\}$ for which there are bases $\{\underline{u}_i\}_{i=1}^n \subset \mathbb{R}^n$ $\{\underline{v}_i\}_{i=1}^m \subset \mathbb{R}^m$ such that the matrix of T with respect to these bases is $D^{(k)}$, where

$$D^{(k)} = \begin{cases} 1 & 1 \le i = j \le k \\ 0 & \text{otherewise} \end{cases},$$

that is $D^{(k)}$ has zeroes everywhere except that the first k entries on the main diagonal are 1.

(b) Show that the row rank and column rank of any matrix $A \in M_{m,n}(\mathbb{R})$ are equal.

Differential Equations

1. Consider the differential equation

$$4x^2\frac{d^2y}{dx^2} + y = 0$$

- (a) For x > 0 find all solutions y(x). (Hint: look for solutions of the form $y(x) = \sqrt{x}f(x)$.)
- (b) Determine y(x) in the limit $x \to +0$.
- 2. The following system of differential equations:

$$\frac{dx_1}{dt} = 2x_1 - x_2 + t$$
$$\frac{dx_2}{dt} = 3x_1 - 2x_2$$

has a linear solution. Determine the set of all solutions $(x_1(t), x_2(t))$.

3. Consider the initial value problem

$$u_{tt} - u_{xx} = f(x) \cos t$$

$$u(x, 0) = 0, \qquad u_t(x, 0) = 0, \qquad -\infty < x < \infty, 0 \le t < \infty$$

for a continuous function f(x) on \mathbb{R} , which vanishes for |x| > R.

- (a) Solve the initial value problem. Note: The solution is of the form $u(x,t) = u_p(x,t) + u_h(x,t)$. Use separation of variables to find a particular solution $u_p(x,t)$ of $u_{tt} - u_{xx} = f(x) \cos t$ (ignoring the initial values). Then, $u_h(x,t)$ is a solution to the homogenous PDE with appropriately adjusted initial conditions.
- (b) The particular solution $u_p(x,t)$ is not unique. Because of that it is not obvious whether the solution u(x,t) is unique. Prove that it is.