Mathematics Qualifying Exam
 University of British Columbia
 January 14, 2012

Part I: Real and Complex Analysis (Pure and Applied Exam)

1. (a) Find all polynomials that are uniformly continuous on \mathbb{R}.
(b) Let A be a nonempty subset of \mathbb{R} and let f be a real-valued function defined on A. Further let $\left\{f_{n}\right\}$ be a sequence of bounded functions on A which converge uniformly to f. Prove that

$$
\frac{f_{1}(x)+\cdots+f_{n}(x)}{n} \rightarrow f(x)
$$

uniformly on A as $n \rightarrow \infty$.
2. (a) Prove the Logarithmic Test

Theorem 1. Suppose that $a_{k} \neq 0$ for large k and that

$$
p=\lim _{k \rightarrow \infty} \frac{\log \left(1 /\left|a_{k}\right|\right)}{\log k} \text { exists. }
$$

- If $p>1$ then $\sum_{k=1}^{\infty} a_{k}$ converges absolutely, and
- If $p<1$ then $\sum_{k=1}^{\infty}\left|a_{k}\right|$ diverges.
(b) Let $\left\{a_{k}\right\}$ be a sequence of non-zero real numbers and suppose that

$$
p=\lim _{k \rightarrow \infty} k\left(1-\left|\frac{a_{k+1}}{a_{k}}\right|\right) \text { exists }
$$

Prove that $\sum_{k=1}^{\infty} a_{k}$ converges absolutely when $p>1$.
3. Evaluate the integral

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} \sigma
$$

where S is the region of the plane $y=z$ lying inside the unit ball centred at the origin, and $\mathbf{F}=(x y, x z,-y z)$, and \mathbf{n} is the upward-pointing normal.
Note that it might be helpful to remember that

$$
\int 2 \sin ^{2} t \mathrm{~d} t=t-\sin t \cos t
$$

4. In the following, justify your answer.
(a) (6 points) Prove or disprove:

There exists a holomorphic function f on \mathbb{C} (thus an entire function) such that $f(D)=Q$ where D is the unit disk $D=\{z \in \mathbb{C}| | z \mid<1\}$ and Q is the square $Q=\{z \in \mathbb{C} \mid-1<\operatorname{Re} z, \operatorname{Im} z<1\}$.
(b) (7 points) Find all holomorphic functions $f(z)$ on $\mathbb{C} \backslash\{0\}$ such that

$$
f(1)=1, \quad|f(z)| \leq \frac{1}{|z|^{3}}
$$

(c) (7 points) Find a holomorphic function $f(z)$ on $D=\{z \in \mathbb{C}| | z \mid<1\}$, which maps D onto the infinite sector

$$
S=\left\{z=r e^{i \theta} \in \mathbb{C} \mid 0<\theta<\pi / 4\right\} .
$$

5. (a) (6 points) Prove or disprove:

There exists a nonconstant holomorphic function $f(z)$ from $D=\{z \in \mathbb{C}| | z \mid<1\}$ into \mathbb{C} such that the area of its image, area $f(D)=0$.
(b) (7 points) Show that there is no holomorphic function $f(z)$ on $D=\{z \in \mathbb{C}| | z \mid<1\}$ such that $|f(z)|=|z|^{1 / 2}$ for all $z \in D$.
(c) (7 points) Find all harmonic functions $u(x, y)$ on \mathbb{R}^{2} such that $e^{u(x, y)} \leq 10+\left(x^{2}+y^{2}\right)$ and $u(1,1)=0$.
6. (20 points) Evaluate the following integral, using contour integration, carefully justifying each step:

$$
\int_{0}^{\infty} \frac{\log x}{\left(1+x^{2}\right)^{2}} d x
$$

Mathematics Qualifying Exam

University of British Columbia

January 14, 2012

Part II: Linear Algebra and Algebra (pure exam)

1. Determine the eigenvalues and a basis of the corresponding eigenspaces for the linear map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by the matrix \mathbf{A} with respect to the standard basis, where:

$$
\mathbf{A}=\left(\begin{array}{lll}
5 & 4 & 2 \\
4 & 5 & 2 \\
2 & 2 & 2
\end{array}\right)
$$

Note: all eigenvalues are rational numbers.
2. Let $\mathcal{N}_{n} \subset M_{n}(\mathbb{R})$ be the set of nilpotent matrices, that is the set of $n \times n$ matrices A such that $A^{k}=0$ for some k. Show that \mathcal{N}_{n} is a closed subset of $M_{n}(\mathbb{R})$ (identify the latter with $\mathbb{R}^{n^{2}}$).
3. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map.
(a) Show that there is a unique integer $0 \leq k \leq \min \{n, m\}$ for which there are bases $\left\{\underline{u}_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{n}\left\{\underline{v}_{i}\right\}_{i=1}^{m} \subset \mathbb{R}^{m}$ such that the matrix of T with respect to these bases is $D^{(k)}$, where

$$
D^{(k)}= \begin{cases}1 & 1 \leq i=j \leq k \\ 0 & \text { otherewise }\end{cases}
$$

that is $D^{(k)}$ has zeroes everywhere except that the first k entries on the main diagonal are 1 .
(b) Show that the row rank and column rank of any matrix $A \in M_{m, n}(\mathbb{R})$ are equal.
4. (a) Suppose that the order of a finite group G is divisible by 3 but not 9 . Show that there are either one or two conjugacy classes of elements of order 3 in G.
(b) Give examples of finite groups A, B, C of order divisible by 3 so that the orders of A, B are not divisible by 9 and they have one and two conjugacy classes of elements of order 3, respectively, and so that the order of C is divisible by 9 and it has more than two such conjugacy classes.
5. (a) Let R be an integral domain, and let $f \in R[x]$ be a polynomial. Let $\left\{a_{i}\right\}_{i=1}^{r} \subset R$ be distinct, and suppose that $f\left(a_{i}\right)=0$ for all i. Show that $\prod_{i=1}^{r}\left(x-a_{i}\right)$ divides f in $R[x]$.
(b) Let $\left\{a_{i}\right\}_{i=1}^{n},\left\{b_{j}\right\}_{j=1}^{n}$ be algebraically indepedent, and let $F=\mathbb{Q}(\underline{a}, \underline{b})$ be the field of rational functions in $2 n$ variables over \mathbb{Q}. Let $A \in M_{n}(F)$ be the matrix where $A_{i j}=\frac{1}{a_{i}-b_{j}}$. Show that

$$
\operatorname{det} A=c_{n} \frac{\prod_{1 \leq i<j \leq n}\left(\left(a_{i}-a_{j}\right)\left(b_{i}-b_{j}\right)\right)}{\prod_{i=1}^{n} \prod_{j=1}^{n}\left(a_{i}-b_{j}\right)}
$$

for some universal $c_{n} \in \mathbb{Q}$.
For $n=2$ this identity is:

$$
\operatorname{det}\left(\begin{array}{cc}
\frac{1}{a_{1}-b_{1}} & \frac{1}{a_{1}-b_{2}} \\
\frac{a_{2}-b_{1}}{a_{2}-b_{2}} & \frac{1}{a_{2}-b_{2}}
\end{array}\right)=-\frac{\left(a_{1}-a_{2}\right)\left(b_{1}-b_{2}\right)}{\left(a_{1}-b_{1}\right)\left(a_{1}-b_{2}\right)\left(a_{2}-b_{1}\right)\left(a_{2}-b_{2}\right)} .
$$

6. Let $f(x)=x^{6}+5 x^{3}+1 \in \mathbb{Q}[x]$.
(a) Construct a splitting field Σ for f by adjoining at most two elements to \mathbb{Q}. You may wish to use the primitive cube root of unity $\omega=\frac{-1+\sqrt{-3}}{2}$.
(b) Given that f has no root in $\mathbb{Q}(\sqrt{-3}, \sqrt{21})$ find $[\Sigma: \mathbb{Q}]$ and show that f is irreducible in $\mathbb{Q}[x]$.
(c) Let $\beta \in \Sigma$ be a root of F. Show that there exist unique $\rho, \sigma \in \operatorname{Gal}(\Sigma: \mathbb{Q})$ so that: $\rho(\beta)=\frac{1}{\beta}, \rho(\omega)=\omega, \sigma(\beta)=\beta, \sigma(\omega)=\omega^{2}$. Also, show that ρ and σ commute.
