Analysis Qualifying Exam

University of British Columbia

January 5, 2013

1. (a) Find the volume of the solid given by $x^{2}+z^{2} \leq 1, y^{2}+z^{2} \leq 1$.
(b) Let $\left\{x_{i}\right\}_{i=1}^{\infty}$ be an infinite sequence of real numbers such that every subsequence contains a subsequence converging to 0 . Must the original sequence converge?
2. For each of the following statements, either prove it or give a counterexample:
(a) If the functions $h_{n}(x)$ are continuous real-valued functions on $[0,1]$ such that $\lim _{n \rightarrow \infty} h_{n}(x)=h(x)$ for all $x \in[0,1]$, then $h(x)$ is continuous.
(b) If $f(x)$ and $f_{n}(x)$ are continuous real-valued functions on $[0,1]$, and $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for almost all $x \in[0,1]$, then $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x)=\int_{0}^{1} f(x)$.
(c) If $g(m, n)$ is real for all integers m, n and $\sum_{m=0}^{\infty}\left(\sum_{n=0}^{\infty} g(m, n)\right)$ and $\sum_{n=0}^{\infty}\left(\sum_{m=0}^{\infty} g(m, n)\right)$ are both defined, then they are equal.
3. Prove that the sequence of functions $f_{n}(x)=\sin (n x)$ has no pointwise convergent subsequence.
4. (a) Compute the integral

$$
\int_{\Gamma} \frac{e^{z}}{z^{2}+a^{2}} d z
$$

where Γ is the circle $|z|=2 a, a>0$, oriented counter-clockwise.
(b) Compute the integral

$$
\int_{\Gamma} \frac{z e^{z}}{(z-b)^{3}} d z
$$

where Γ is a simple closed smooth loop in \mathbb{C} with counter-clockwise orientation and $b \notin \Gamma$.
5. Let $f(z)=\sqrt{|x y|}$, where $z=x+i y \in \mathbb{C}$. Does f satisfy the Cauchy-Riemann equations at $z=0$? Does $f^{\prime}(0)$ exist?
6. Suppose the radius of convergence of the power series $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is 1 and f has only finitely many singularities z_{1}, \cdots, z_{m} on the unit circle $C=\{z \in \mathbb{C}:|z|=1\}$ which are all simple poles. Show that the sequence $\left\{a_{n}\right\}$ is bounded.

