Analysis Qualifying Exam

University of British Columbia

January 5, 2013

- 1. (a) Find the volume of the solid given by $x^2 + z^2 \le 1$, $y^2 + z^2 \le 1$.
 - (b) Let $\{x_i\}_{i=1}^{\infty}$ be an infinite sequence of real numbers such that every subsequence contains a subsequence converging to 0. Must the original sequence converge?
- 2. For each of the following statements, either prove it or give a counterexample:
 - (a) If the functions $h_n(x)$ are continuous real-valued functions on [0, 1] such that $\lim_{n\to\infty} h_n(x) = h(x)$ for all $x \in [0, 1]$, then h(x) is continuous.
 - (b) If f(x) and $f_n(x)$ are continuous real-valued functions on [0, 1], and $\lim_{n\to\infty} f_n(x) = f(x)$ for almost all $x \in [0, 1]$, then $\lim_{n\to\infty} \int_0^1 f_n(x) = \int_0^1 f(x)$.
 - (c) If g(m, n) is real for all integers m, n and $\sum_{m=0}^{\infty} (\sum_{n=0}^{\infty} g(m, n))$ and $\sum_{n=0}^{\infty} (\sum_{m=0}^{\infty} g(m, n))$ are both defined, then they are equal.
- 3. Prove that the sequence of functions $f_n(x) = \sin(nx)$ has no pointwise convergent subsequence.
- 4. (a) Compute the integral

$$\int_{\Gamma} \frac{e^z}{z^2 + a^2} dz$$

where Γ is the circle |z| = 2a, a > 0, oriented counter-clockwise.

(b) Compute the integral

$$\int_{\Gamma} \frac{ze^z}{(z-b)^3} dz$$

where Γ is a simple closed smooth loop in \mathbb{C} with counter-clockwise orientation and $b \notin \Gamma$.

- 5. Let $f(z) = \sqrt{|xy|}$, where $z = x + iy \in \mathbb{C}$. Does f satisfy the Cauchy-Riemann equations at z = 0? Does f'(0) exist?
- 6. Suppose the radius of convergence of the power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is 1 and f has only finitely many singularities z_1, \dots, z_m on the unit circle $C = \{z \in \mathbb{C} : |z| = 1\}$ which are all simple poles. Show that the sequence $\{a_n\}$ is bounded.