Differential Equations Qualifying Exam

University of British Columbia

January 5, 2013

- 1. Let S_1 and S_2 be subspaces of a vector space.
 - (a) Give an example to show that in general $S_1 \cup S_2$ need not be subspace.
 - (b) If $S_1 \cup S_2$ is a subspace, prove that $S_1 \subseteq S_2$ or $S_2 \subseteq S_1$.
- 2. Let V be an n-dimensional linear subspace of \mathbb{R}^N $(1 \le n \le N)$. We denote by $\langle v, w \rangle$ the ordinary dot product of vectors $v, w \in \mathbb{R}^N$.
 - (a) If $\{v_1, \ldots, v_n\}$ is a basis for V, define for each i the linear map $\nu^i(v_j) = \delta^i_j$ where $\delta^i_j = 0$ if $i \neq j$ and $\delta^i_i = 1$. This definition on the basis vectors then uniquely determines ν^i as an element of V^* , the dual space of V. Prove that $\{\nu^1, \ldots, \nu^n\}$ is a basis for V^* .
 - (b) Given $v \in V$, let $v^* : V \to \mathbb{R}$ be the linear map $v^*(w) = \langle w, v \rangle$. Show that the map $v \to v^*$ defines a linear isomorphism from V to V^* .
 - (c) We extend the dot product to V^* by requiring $\langle v^*, w^* \rangle = \langle v, w \rangle$ for $v, w \in V$. If $\{v_1, \ldots, v_n\}$ is a basis for V, let $g_{ij} = \langle v_i, v_j \rangle$ for $1 \leq i, j \leq n$. Show that $\langle \nu^i, \nu^j \rangle = g^{ij}$ where the matrix (g^{ij}) is the inverse matrix of (g_{ij}) .
 - (d) Determine the change of basis matrix from $\{v_1^*, \ldots, v_n^*\}$ to $\{\nu^1, \ldots, \nu^n\}$.
- 3. (a) Let A be an $n \times n$ real matrix. Show that if $A^k = 0$ for some positive integer k and A is not the zero matrix, then A cannot be diagonalized. Show that 0 is an eigenvalue of A.
 - (b) Let V be a vector space, and suppose that v_1, \ldots, v_n are eigenvectors of a linear map $T: V \to V$ corresponding to distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. Prove that v_1, \ldots, v_n are linearly independent.
- 4. Find the general solution to the system of equations

$$oldsymbol{x}' = \left(egin{array}{cc} 1 & -2 \ 2 & 5 \end{array}
ight) oldsymbol{x}.$$

- 5. Let y(x) be a smooth curve over the interval $(-\pi, \pi)$. On the interval $(-\pi, 0)$, the curve passes through P: $\left(-\frac{\pi}{\sqrt{2}}, \frac{\pi}{\sqrt{2}}\right)$ and the normal to y(x) at any point on the curve passes through the origin. On the interval $[0, \pi)$, the function y(x) satisfies the second-order ODE y'' = -y x. Find y(x).
- 6. The steady-state temperature distribution inside a circular metal disc, whose edge has a prescribed temperature profile, is determined by Laplace's equation:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 T}{\partial \theta^2} = 0,$$

with boundary condition $T(a, \theta) = p(\theta)$. Here r and θ are the polar coordinates, a is the radius of the disc, and $p(\theta)$ is the prescribed edge temperature around the disc. Using separation of variables, one can derive the following solution to Laplace's equation on the disc:

$$T(r,\theta) = \sum_{n=0}^{\infty} A_n r^n \cos n\theta + \sum_{n=1}^{\infty} B_n r^n \sin n\theta, \quad \text{for } 0 \le r \le a, -\pi < \theta \le \pi.$$

- (a) Determine the coefficients A_n and B_n so that the solution satisfies the boundary condition at the edge $T(a, \theta) = p(\theta)$.
- (b) Use the above solution to show that temperature at the center (r = 0) is equal to the average around the edge: $T_0 = T(0, \theta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} p(\theta) d\theta$.
- (c) Use this *mean value property* to show that the maximum and minimum temperatures on the disc occur on the boundary.
- (d) The above property holds for elliptic partial differential equations in general, and is known as the *maximum principle*. Use this principle to show that the solution to Poisson's equation,

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 T}{\partial \theta^2} = q(r,\theta),$$

with the boundary condition $T(a, \theta) = p(\theta)$, is unique.