Algebra Qualifying Exam

University of British Columbia

January 5, 2013

1. Let S_{1} and S_{2} be subspaces of a vector space.
(a) Give an example to show that in general $S_{1} \cup S_{2}$ need not be subspace.
(b) If $S_{1} \cup S_{2}$ is a subspace, prove that $S_{1} \subseteq S_{2}$ or $S_{2} \subseteq S_{1}$.
2. Let V be an n-dimensional linear subspace of $\mathbb{R}^{N}(1 \leq n \leq N)$. We denote by $\langle v, w\rangle$ the ordinary dot product of vectors $v, w \in \mathbb{R}^{N}$.
(a) If $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V, define for each i the linear map $\nu^{i}\left(v_{j}\right)=\delta_{j}^{i}$ where $\delta_{j}^{i}=0$ if $i \neq j$ and $\delta_{i}^{i}=1$. This definition on the basis vectors then uniquely determines ν^{i} as an element of V^{*}, the dual space of V. Prove that $\left\{\nu^{1}, \ldots, \nu^{n}\right\}$ is a basis for V^{*}.
(b) Given $v \in V$, let $v^{*}: V \rightarrow \mathbb{R}$ be the linear map $v^{*}(w)=\langle w, v\rangle$. Show that the map $v \rightarrow v^{*}$ defines a linear isomorphism from V to V^{*}.
(c) We extend the dot product to V^{*} by requiring $\left\langle v^{*}, w^{*}\right\rangle=\langle v, w\rangle$ for $v, w \in V$. If $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V, let $g_{i j}=\left\langle v_{i}, v_{j}\right\rangle$ for $1 \leq i, j \leq n$. Show that $\left\langle\nu^{i}, \nu^{j}\right\rangle=g^{i j}$ where the matrix $\left(g^{i j}\right)$ is the inverse matrix of $\left(g_{i j}\right)$.
(d) Determine the change of basis matrix from $\left\{v_{1}^{*}, \ldots, v_{n}^{*}\right\}$ to $\left\{\nu^{1}, \ldots, \nu^{n}\right\}$.
3. (a) Let A be an $n \times n$ real matrix. Show that if $A^{k}=0$ for some positive integer k and A is not the zero matrix, then A cannot be diagonalized. Show that 0 is an eigenvalue of A.
(b) Let V be a vector space, and suppose that v_{1}, \ldots, v_{n} are eigenvectors of a linear map $T: V \rightarrow V$ corresponding to distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Prove that v_{1}, \ldots, v_{n} are linearly independent.
4. Let R be a commutative ring with identity and let $I, J \subset R$ be two ideals. Define the colon ideal

$$
(I: J)=\{r \in R \mid r j \in I \text { for all } j \in J\} .
$$

You may assume without proof that this is indeed an ideal in R.
(a) Let $R=\mathbb{Z}[x]$ and $I=(f(x)), J=(g(x))$ for some polynomials $f(x), g(x) \in \mathbb{Z}[x]$. Show that $(I: J)$ is principal and describe its generator in terms of irreducible factors of $f(x)$ and $g(x)$.
(b) Let $R=\mathbb{Z}[x], I=(x-2,6)$ and $J=(x)$. Find a finite set of generators for the ideal $(I: J)$.
5. Let $f(x) \in \mathbb{Q}[x]$ be a polynomial of degree 7 and let E be the splitting field of $f(x)$ over \mathbb{Q}. Assume that $\operatorname{Gal}(E / \mathbb{Q})=S_{7}$.
(a) Find the number of intermediate fields K between \mathbb{Q} and E, such that

$$
\operatorname{deg}(E / K)=9
$$

(b) Show that the intersection of all fields K in part (a) is not equal to \mathbb{Q}.
(c) If $\alpha \in E$ is a root of $f(x)$, how many of the intermediate fields in part (a) contain α ?
6. In each case below, find the Galois group of the polynomial $f(x)$ over \mathbb{Q}. Describe the Galois group as an abstract group and also give its action on the roots of $f(x)$.
(a) $f(x)=x^{4}+4$.
(b) $f(x)=x^{6}-2$.

