Algebra Qualifying Exam

University of British Columbia

January 5, 2013

- 1. Let S_1 and S_2 be subspaces of a vector space.
 - (a) Give an example to show that in general $S_1 \cup S_2$ need not be subspace.
 - (b) If $S_1 \cup S_2$ is a subspace, prove that $S_1 \subseteq S_2$ or $S_2 \subseteq S_1$.
- 2. Let V be an n-dimensional linear subspace of \mathbb{R}^N $(1 \le n \le N)$. We denote by $\langle v, w \rangle$ the ordinary dot product of vectors $v, w \in \mathbb{R}^N$.
 - (a) If $\{v_1, \ldots, v_n\}$ is a basis for V, define for each i the linear map $\nu^i(v_j) = \delta^i_j$ where $\delta^i_j = 0$ if $i \neq j$ and $\delta^i_i = 1$. This definition on the basis vectors then uniquely determines ν^i as an element of V^* , the dual space of V. Prove that $\{\nu^1, \ldots, \nu^n\}$ is a basis for V^* .
 - (b) Given $v \in V$, let $v^* : V \to \mathbb{R}$ be the linear map $v^*(w) = \langle w, v \rangle$. Show that the map $v \to v^*$ defines a linear isomorphism from V to V^* .
 - (c) We extend the dot product to V^* by requiring $\langle v^*, w^* \rangle = \langle v, w \rangle$ for $v, w \in V$. If $\{v_1, \ldots, v_n\}$ is a basis for V, let $g_{ij} = \langle v_i, v_j \rangle$ for $1 \leq i, j \leq n$. Show that $\langle \nu^i, \nu^j \rangle = g^{ij}$ where the matrix (g^{ij}) is the inverse matrix of (g_{ij}) .
 - (d) Determine the change of basis matrix from $\{v_1^*, \ldots, v_n^*\}$ to $\{\nu^1, \ldots, \nu^n\}$.
- 3. (a) Let A be an $n \times n$ real matrix. Show that if $A^k = 0$ for some positive integer k and A is not the zero matrix, then A cannot be diagonalized. Show that 0 is an eigenvalue of A.
 - (b) Let V be a vector space, and suppose that v_1, \ldots, v_n are eigenvectors of a linear map $T: V \to V$ corresponding to distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. Prove that v_1, \ldots, v_n are linearly independent.
- 4. Let R be a commutative ring with identity and let $I, J \subset R$ be two ideals. Define the colon ideal

$$(I:J) = \{ r \in R \mid rj \in I \text{ for all } j \in J \}.$$

You may assume without proof that this is indeed an ideal in R.

- (a) Let $R = \mathbb{Z}[x]$ and I = (f(x)), J = (g(x)) for some polynomials $f(x), g(x) \in \mathbb{Z}[x]$. Show that (I : J) is principal and describe its generator in terms of irreducible factors of f(x) and g(x).
- (b) Let $R = \mathbb{Z}[x]$, I = (x 2, 6) and J = (x). Find a finite set of generators for the ideal (I : J).
- 5. Let $f(x) \in \mathbb{Q}[x]$ be a polynomial of degree 7 and let E be the splitting field of f(x) over \mathbb{Q} . Assume that $Gal(E/\mathbb{Q}) = S_7$.

(a) Find the number of intermediate fields K between \mathbb{Q} and E, such that

$$\deg(E/K) = 9.$$

- (b) Show that the intersection of all fields K in part (a) is not equal to \mathbb{Q} .
- (c) If $\alpha \in E$ is a root of f(x), how many of the intermediate fields in part (a) contain α ?
- 6. In each case below, find the Galois group of the polynomial f(x) over \mathbb{Q} . Describe the Galois group as an abstract group and also give its action on the roots of f(x).

(a)
$$f(x) = x^4 + 4$$
.

(b)
$$f(x) = x^6 - 2$$
.