Qualifying Exam Problems: Algebra

1. (10 points) (a) Show that any subgroup of a group of order 341 is abelian.
(b) Let A be an infinite set and let S_{A} be the permutation group on A. Consider the following subsets of S_{A}.

$$
\begin{gathered}
H=\left\{\sigma \in S_{A} \mid \sigma \text { moves at most five elements of } A\right\} \\
K=\left\{\sigma \in S_{A} \mid \sigma \text { moves finitely many elements of } A .\right\}
\end{gathered}
$$

Which of these subsets is a group? Justify your answer.
(c) Let p be a prime and S_{p} be the symmetric group on p elements. Show that G has $(p-2)$! p-Sylow subgroups and deduce the congruence $(p-1)!\equiv-1 \bmod p$.
2. (10 points) (a) Let K be a field and let $f(x)$ in $K[X]$ be an irreducible polynomial of degree 7 with splitting field M. Suppose that the Galois $\operatorname{group} \operatorname{Gal}(M / K) \simeq S_{7}$, Let α be a root of f and put $L=K(\alpha)$. Prove that if E is an extension of K such that $K \subseteq E \subseteq L$, then either $E=K$ or $E=L$.
(b) Let L be the splitting field of $p(X)=\left(X^{3}-2\right)\left(X^{2}-3\right)$ over \mathbb{Q} and let G be the Galois group of $p(X)$ over \mathbb{Q}. Find the degree $[L: \mathbb{Q}]$.
(c) Express the Galois group $\operatorname{Gal}(L / \mathbb{Q})$ as a direct product of two nontrivial groups.
3. (10 points) (a) Let R be a unique factorization domain and let K be the quotient field of R. An element $z \in K$ is said to be integral over R if there exists a monic polynomial $f \in R[x]$ such that $f(z)=0$. Prove that if z is integral over R, then z is in R.
(b) Let t_{1}, t_{2}, t_{3} be the roots of the polynomial $X^{3}+3 X-1$ over \mathbb{Q}. Find the minimal polynomial of $\frac{1}{t_{3}}$.
(c) Let $a, b \in \mathbb{Z}$. Show that if 5 divides $a^{2}-2 b^{2}$, then 5 divides both a and b.
(d) Let $R=\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}$ and let $M=\{a+b \sqrt{2} \in R: 5 \mid a$ and $5 \mid b\}$. Show that M is a maximal ideal in R and compute the order of the field R / M.
4. (10 points) Let $A \in M_{n, n}(\mathbb{R})$ be a matrix of $\operatorname{rank} n-1$. Let $L_{A}: M_{n, n}(\mathbb{R}) \longrightarrow M_{n, n}(\mathbb{R})$ be the function given by $L_{A}(B)=A \cdot B$.
(a) Show that L_{A} is a linear map.
(b) Find the dimension of the image of L_{A}.
(c) Find a basis for the image of L_{A}.
5. (10 points) Let $k \in \mathbb{N}$, let $A_{1}, \ldots, A_{k} \in M_{n, n}(\mathbb{R})$ and let

$$
B=\sum_{i=1}^{k} A_{i} \cdot A_{i}^{t}
$$

where for each matrix C, we denote by C^{t} its transpose.
(a) Prove that B is a symmetric matrix.
(b) Prove that B is a positive definite matrix, i.e. for each vector $v \in M_{n, 1}(\mathbb{R})$, the dot product $\langle B v, v\rangle$ is nonnegative.
(c) Prove that $\operatorname{det}(B) \geq 0$.
6. (10 points) Solve the following system of linear equations:

$$
\left\{\begin{array}{cl}
x_{1}+x_{2}+x_{3}+x_{4} & =0 \\
2 x_{1}+4 x_{2}+8 x_{3}+10 x_{4} & =2 \\
-2 x_{1}-x_{2}+x_{3}+2 x_{4} & =1 \\
-10 x_{1}-8 x_{2}-4 x_{3}-2 x_{4} & =2
\end{array} .\right.
$$

Explain your answer.

