- 1. (10 points) (a) Show that any subgroup of a group of order 341 is abelian.
 - (b) Let A be an infinite set and let S_A be the permutation group on A. Consider the following subsets of S_A .

 $H = \{ \sigma \in S_A \mid \sigma \text{ moves at most five elements of } A \}$

 $K = \{ \sigma \in S_A \mid \sigma \text{ moves finitely many elements of } A. \}$

Which of these subsets is a group? Justify your answer.

- (c) Let p be a prime and S_p be the symmetric group on p elements. Show that G has (p-2)! p-Sylow subgroups and deduce the congruence $(p-1)! \equiv -1 \mod p$.
- 2. (10 points) (a) Let K be a field and let f(x) in K[X] be an irreducible polynomial of degree 7 with splitting field M. Suppose that the Galois group $\operatorname{Gal}(M/K) \simeq S_7$, Let α be a root of f and put $L = K(\alpha)$. Prove that if E is an extension of K such that $K \subseteq E \subseteq L$, then either E = K or E = L.
 - (b) Let L be the splitting field of $p(X) = (X^3 2)(X^2 3)$ over \mathbb{Q} and let G be the Galois group of p(X) over \mathbb{Q} . Find the degree $[L:\mathbb{Q}]$.
 - (c) Express the Galois group $\operatorname{Gal}(L/\mathbb{Q})$ as a direct product of two nontrivial groups.
- 3. (10 points) (a) Let R be a unique factorization domain and let K be the quotient field of R. An element $z \in K$ is said to be integral over R if there exists a monic polynomial $f \in R[x]$ such that f(z) = 0. Prove that if z is integral over R, then z is in R.
 - (b) Let t_1, t_2, t_3 be the roots of the polynomial $X^3 + 3X 1$ over \mathbb{Q} . Find the minimal polynomial of $\frac{1}{t_2}$.
 - (c) Let $a, b \in \mathbb{Z}$. Show that if 5 divides $a^2 2b^2$, then 5 divides both a and b.
 - (d) Let $R = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$ and let $M = \{a + b\sqrt{2} \in R : 5 \mid a \text{ and } 5 \mid b\}$. Show that M is a maximal ideal in R and compute the order of the field R/M.
- 4. (10 points) Let $A \in M_{n,n}(\mathbb{R})$ be a matrix of rank n-1. Let $L_A : M_{n,n}(\mathbb{R}) \longrightarrow M_{n,n}(\mathbb{R})$ be the function given by $L_A(B) = A \cdot B$.
 - (a) Show that L_A is a linear map.
 - (b) Find the dimension of the image of L_A .
 - (c) Find a basis for the image of L_A .
- 5. (10 points) Let $k \in \mathbb{N}$, let $A_1, \ldots, A_k \in M_{n,n}(\mathbb{R})$ and let

$$B = \sum_{i=1}^{k} A_i \cdot A_i^t,$$

where for each matrix C, we denote by C^t its transpose.

- (a) Prove that B is a symmetric matrix.
- (b) Prove that B is a positive definite matrix, i.e. for each vector $v \in M_{n,1}(\mathbb{R})$, the dot product $\langle Bv, v \rangle$ is nonnegative.
- (c) Prove that $det(B) \ge 0$.
- 6. (10 points) Solve the following system of linear equations:

$$\begin{cases} x_1 + x_2 + x_3 + x_4 &= 0\\ 2x_1 + 4x_2 + 8x_3 + 10x_4 &= 2\\ -2x_1 - x_2 + x_3 + 2x_4 &= 1\\ -10x_1 - 8x_2 - 4x_3 - 2x_4 &= 2 \end{cases}$$

Explain your answer.