Analysis Qualifying Exam (Draft) (January XX, 2014)

1. (10 points) Prove that the series

$$\sum_{n=1}^{\infty} \frac{x^2 \cos(n^2 x)}{n^2}$$

converges pointwise to a continuous function on \mathbb{R} .

Solution: On any bounded interval [-R, R], we have

$$\left|\frac{x^2\cos(n^2x)}{n^2}\right| \le \frac{R^2}{n^2}$$

and the series $\sum_{n=1}^{\infty} \frac{R^2}{n^2}$ is convergent. Hence the original series is uniformly convergent on any interval [-R, R], and the summands are continuous, so that the series is pointwise convergent to a continuous function on [-R, R]. Since R was arbitrary, the limit is continuous on \mathbb{R} .

2. (10 points) Use Green's theorem to evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F} = e^{x^2} \mathbf{i} + e^{2x+y} \mathbf{j}$ and C is the boundary of the rectangle in \mathbb{R}^2 with vertices (0,0), (0,1), (2,1) and (2,0), oriented clockwise.

Solution: $\int_{C} \mathbf{F} \cdot d\mathbf{r} = -\iint_{D} (2e^{2x+y} - 0) dA, \text{ where } D \text{ is the rectangle as above. (The minus sign is because } C$ is negatively oriented.) So

$$\int_C \mathbf{F} \cdot d\mathbf{r} = -\int_0^2 \int_0^1 2e^{2x+y} dy dx = -\int_0^2 2e^{2x} dx \int_0^1 e^y dy = -\left(e^{2x}\Big|_0^2\right) \left(e^y\Big|_0^1\right) = -(e^4 - 1)(e - 1).$$

3. (10 points) Assume that a function $f : \mathbb{R} \to \mathbb{R}$ is differentiable on [a, b], f(a) = 0, and that there exists a constant $C \ge 0$ such that $|f'(x)| \le C|f(x)|$ for $x \in [a, b]$. Prove that $f(x) \equiv 0$ on [a, b].

Solution: Suppose that $f \neq 0$, then there is a $x \in (a, b]$ such that $f(x) \neq 0$. Without loss of generality, we may assume that f(x) > 0. Since f is continuous, we can choose an interval $(a_1, b_1) \subset [a, b]$ such that f(x) > 0 on (a_1, b_1) . Taking a_1 as small as possible, we may further assume that $a_1 = 0$ (note that $a_1 \geq a$ since f(a) = 0.) Let $a_1 < x < y < b_1$, then by the mean value theorem

$$|\ln f(y) - \ln f(x)| = |(\ln f)'(\theta)| = \frac{|f'(\theta)|}{|f(\theta)|}$$

for some $\theta \in (x, y)$. By the assumption on f, we get that $|\ln f(y) - \ln f(x)| \leq C$ for all $x, y \in (a_1, b_1)$. But if $x \searrow a_1$, then $f(x) \searrow 0$, so that $\ln f(x) \to \infty$ and $|\ln f(y) - \ln f(x)| \to \infty$ for any fixed y, a contradiction.

4. (20 points). Evaluate the integral $\int_0^\infty \frac{x^\alpha}{1+x+x^2} dx$ where $0 < \alpha < 1$.

Solution: We use a branch cut for z^{α} ; we take this along the positive real axis and define

$$z^{\alpha} = r^{\alpha} e^{i\alpha\theta}$$

where $z = re^{i\theta}$ and $0 \le \theta < 2\pi$.

Consider

$$\int_C \frac{z^\alpha}{1+z+z^2} dz$$

where the keyhole contour C consists of a large circle C_R of radius R, a small circle C_{ϵ} of radius ϵ (to avoid the singularity of z^{α} at z = 0) and two lines just above and below the branch cut. The contribution from C_R is $O(R^{\alpha-2}) \times 2\pi R = O(R^{\alpha-1}) \to 0$ as $R \to +\infty$. The contribution from C_{ϵ} is (substituting $z = \epsilon e^{i\theta}$ on C_{ϵ})

$$\int_{2\pi}^{0} \frac{\epsilon^{\alpha} e^{i\alpha\theta}}{1 + \epsilon e^{i\theta} + \epsilon^{2} e^{2i\theta}} i\epsilon e^{i\theta} d\theta = O(\epsilon^{\alpha+1}) \to 0$$

The contribution from just above the branch cut is

$$\int_{\epsilon}^{R} \frac{x^{\alpha}}{1+x+x^{2}} dx \to I$$

as $\epsilon \to 0$ and $R \to +\infty$. The contribution from just below the branch cut is

$$\int_{R}^{\epsilon} \frac{x^{\alpha} e^{2\alpha \pi i}}{1+x+x^2} dx \to -e^{2\alpha i} I$$

as $\epsilon \to 0$ and $R \to +\infty$.

Hence

$$\int_C \frac{z^{\alpha}}{1+z+z^2} dz \to (1-e^{2\pi\alpha i})I$$

as $\epsilon \to 0$ and $R \to \infty$.

But the integrand is equal to

$$\frac{z^{\alpha}}{(z-e^{\frac{2}{3}\pi i})(z-e^{\frac{4\pi}{3}i})}$$

so the poles inside C are at $e^{\frac{2\pi}{3}i}$ with residue $\frac{e^{\frac{2\alpha\pi}{3}i}}{i}$ and at $e^{\frac{4\pi}{3}i}$ with residue $\frac{e^{\frac{4\alpha\pi}{3}i}}{-i}$. We conclude that

$$(1 - e^{2\pi\alpha i})I = 2\pi i \left(\frac{e^{\frac{2\alpha\pi}{3}i}}{i} + \frac{e^{\frac{4\alpha\pi}{3}i}}{-i}\right)$$
$$I = 2\pi \frac{\sin\frac{\alpha\pi}{3}}{\sin(\alpha\pi)}$$

5. (20points) (a) (10points) Use Rouche's theorem to prove the Fundamental Theorem of Algebra: every non-zero, single-variable, degree n polynomial with complex coefficients has, counted with multiplicity, exactly n roots.

(b) (10 points) How many zeroes does the function $f(z)=z^{20}+4z^2e^{z+1}-3z^8$ have in the unit disk $\{|z|<1\}?$

Solution:

Solution to (a): Let $P_n(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_0$ and $C = \{|z| = R\}$ where R is large. Now choose

 $F(z) = z^n$, $G(z) = a_{n-1}z^{n-1} + \dots + a_0$

On C, $|G(z)| \le |a_{n-1}||R|^{n-1} + |a_{n-2}|R^{n-2} + \dots + |a_0| < |a_n|R^n$ if R is sufficiently large.

Since F has n zeroes (counting multiplicity), by Rouche's theorem, F + G has exactly n zeroes in $\{|z| < R\}$.

One should also prove that for |z| = R large there are no zeroes.

Solution to (b): We take

$$F(z) = 4z^2 e^{z+1}, G(z) = z^{20} - 3z^8$$

and estimate on the circle |z| = 1

$$|G(z)| \le |z|^{20} + 3 \le 4, |F(z)| = 4e^{Re(z)+1} \ge 4$$

A more closer look shows that

|G(z)| < |F(z)|

Since the function F(z) has two zeroes in $\{|z| < 1\}$, by Rouche's theorem, $f(z) = z^{20} + 4z^2e^{z+1} - 3z^8$ also has two zeroes in the unit disk $\{|z| < 1\}$.

6. (20pints) (a) (10points) Classify all analytic functions having the property that

 $f(z+m+ni) = f(z) \ (z \in \mathbb{C}, m, n \in \mathbb{Z})$

where \mathbb{Z} denotes the set of integers.

(b) (10points) Let $\Omega = \{z \in \mathbb{C} \mid \frac{3}{4}\pi < |z| < \frac{7}{4}\pi\}$. Show that there does not exist a sequence $\{P_n(z)\}$ of polynomials in z such that $P_n(z) \to \tan(z)$ uniformly in any compact set in Ω .

Solution:

Solution to (a): We claim that f must be constant. In fact, let $S = [0, 1] \times [0, 1]$. The periodicity condition on f gives that $f(\mathbb{C}) = f(S)$. Since S is compact and f is continuous (it is holomorphic), it follows that f is bounded on S, and therefore, f is bounded on \mathbb{C} . By Liouville's Theorem, we deduce that f is constant.

Solution to (b): We prove it by contradiction. Suppose that there does exist a sequence $\{P_n(z)\}$ of polynomials in z such that $P_n(z) \to \tan(z)$ uniformly in any compact set in Ω . In particular, we take

 $C=\{|z|=\pi\}$

By Cauchy residue theorem,

$$\int_C P_n(z)dz = 0$$

By uniform convergence we then have

$$\int_C \tan(z) dz = 0$$

But $\tan(z)$ has two poles $z = \frac{\pi}{2}, -\frac{\pi}{2}$ inside $\{|z| < \pi\}$ with residue -1 and hence

$$\int_C \tan(z) dz = -4\pi i$$

This reaches a contradiction.