Analysis Qualifying Exam (Draft)

(January XX, 2014)

1. (10 points) Prove that the series

$$
\sum_{n=1}^{\infty} \frac{x^{2} \cos \left(n^{2} x\right)}{n^{2}}
$$

converges pointwise to a continuous function on \mathbb{R}.

Solution: On any bounded interval $[-R, R]$, we have

$$
\left|\frac{x^{2} \cos \left(n^{2} x\right)}{n^{2}}\right| \leq \frac{R^{2}}{n^{2}}
$$

and the series $\sum_{n=1}^{\infty} \frac{R^{2}}{n^{2}}$ is convergent. Hence the original series is uniformly convergent on any interval $[-R, R]$, and the summands are continuous, so that the series is pointwise convergent to a continuous function on $[-R, R]$. Since R was arbitrary, the limit is continuous on \mathbb{R}.
2. (10 points) Use Green's theorem to evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=e^{x^{2}} \mathbf{i}+e^{2 x+y} \mathbf{j}$ and C is the boundary of the rectangle in \mathbb{R}^{2} with vertices $(0,0),(0,1),(2,1)$ and $(2,0)$, oriented clockwise.

Solution:

$\int_{C} \mathbf{F} \cdot d \mathbf{r}=-\iint_{D}\left(2 e^{2 x+y}-0\right) d A$, where D is the rectangle as above. (The minus sign is because C is negatively oriented.) So

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=-\int_{0}^{2} \int_{0}^{1} 2 e^{2 x+y} d y d x=-\int_{0}^{2} 2 e^{2 x} d x \int_{0}^{1} e^{y} d y=-\left(\left.e^{2 x}\right|_{0} ^{2}\right)\left(\left.e^{y}\right|_{0} ^{1}\right)=-\left(e^{4}-1\right)(e-1)
$$

3. (10 points) Assume that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable on $[a, b], f(a)=0$, and that there exists a constant $C \geq 0$ such that $\left|f^{\prime}(x)\right| \leq C|f(x)|$ for $x \in[a, b]$. Prove that $f(x) \equiv 0$ on $[a, b]$.

Solution: Suppose that $f \not \equiv 0$, then there is a $x \in(a, b]$ such that $f(x) \neq 0$. Without loss of generality, we may assume that $f(x)>0$. Since f is continuous, we can choose an interval $\left(a_{1}, b_{1}\right) \subset[a, b]$ such that $f(x)>0$ on $\left(a_{1}, b_{1}\right)$. Taking a_{1} as small as possible, we may further assume that $a_{1}=0$ (note that $a_{1} \geq a$ since $f(a)=0$.) Let $a_{1}<x<y<b_{1}$, then by the mean value theorem

$$
|\ln f(y)-\ln f(x)|=\left|(\ln f)^{\prime}(\theta)\right|=\frac{\left|f^{\prime}(\theta)\right|}{|f(\theta)|}
$$

for some $\theta \in(x, y)$. By the assumption on f, we get that $|\ln f(y)-\ln f(x)| \leq C$ for all $x, y \in\left(a_{1}, b_{1}\right)$. But if $x \searrow a_{1}$, then $f(x) \searrow 0$, so that $\ln f(x) \rightarrow \infty$ and $|\ln f(y)-\ln f(x)| \rightarrow \infty$ for any fixed y, a contradiction.
4. (20 points). Evaluate the integral $\int_{0}^{\infty} \frac{x^{\alpha}}{1+x+x^{2}} d x$ where $0<\alpha<1$.

Solution: We use a branch cut for z^{α}; we take this along the positive real axis and define

$$
z^{\alpha}=r^{\alpha} e^{i \alpha \theta}
$$

where $z=r e^{i \theta}$ and $0 \leq \theta<2 \pi$.
Consider

$$
\int_{C} \frac{z^{\alpha}}{1+z+z^{2}} d z
$$

where the keyhole contour C consists of a large circle C_{R} of radius R, a small circle C_{ϵ} of radius ϵ (to avoid the singularity of z^{α} at $z=0$) and two lines just above and below the branch cut.
The contribution from C_{R} is $O\left(R^{\alpha-2}\right) \times 2 \pi R=O\left(R^{\alpha-1}\right) \rightarrow 0$ as $R \rightarrow+\infty$.
The contribution from C_{ϵ} is (substituting $z=\epsilon e^{i \theta}$ on C_{ϵ})

$$
\int_{2 \pi}^{0} \frac{\epsilon^{\alpha} e^{i \alpha \theta}}{1+\epsilon e^{i \theta}+\epsilon^{2} e^{2 i \theta}} i \epsilon e^{i \theta} d \theta=O\left(\epsilon^{\alpha+1}\right) \rightarrow 0
$$

The contribution from just above the branch cut is

$$
\int_{\epsilon}^{R} \frac{x^{\alpha}}{1+x+x^{2}} d x \rightarrow I
$$

as $\epsilon \rightarrow 0$ and $R \rightarrow+\infty$. The contribution from just below the branch cut is

$$
\int_{R}^{\epsilon} \frac{x^{\alpha} e^{2 \alpha \pi i}}{1+x+x^{2}} d x \rightarrow-e^{2 \alpha i} I
$$

as $\epsilon \rightarrow 0$ and $R \rightarrow+\infty$.
Hence

$$
\int_{C} \frac{z^{\alpha}}{1+z+z^{2}} d z \rightarrow\left(1-e^{2 \pi \alpha i}\right) I
$$

as $\epsilon \rightarrow 0$ and $R \rightarrow \infty$.
But the integrand is equal to

$$
\frac{z^{\alpha}}{\left(z-e^{\frac{2}{3} \pi i}\right)\left(z-e^{\frac{4 \pi}{3} i}\right)}
$$

so the poles inside C are at $e^{\frac{2 \pi}{3} i}$ with residue $\frac{e^{\frac{2 \alpha \pi}{3} i}}{i}$ and at $e^{\frac{4 \pi}{3} i}$ with residue $\frac{e^{\frac{4 \alpha \pi}{3} i}}{-i}$.
We conclude that

$$
\begin{aligned}
\left(1-e^{2 \pi \alpha i}\right) I & =2 \pi i\left(\frac{e^{\frac{2 \alpha \pi}{3} i}}{i}+\frac{e^{\frac{4 \alpha \pi}{3} i}}{-i}\right) \\
I & =2 \pi \frac{\sin \frac{\alpha \pi}{3}}{\sin (\alpha \pi)}
\end{aligned}
$$

5. (20points) (a) (10points) Use Rouche's theorem to prove the Fundamental Theorem of Algebra: every non-zero, single-variable, degree n polynomial with complex coefficients has, counted with multiplicity, exactly n roots.
(b) (10points) How many zeroes does the function $f(z)=z^{20}+4 z^{2} e^{z+1}-3 z^{8}$ have in the unit disk $\{|z|<1\}$?

Solution:

Solution to (a): Let $P_{n}(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{0}$ and $C=\{|z|=R\}$ where R is large. Now choose

$$
F(z)=z^{n}, \quad G(z)=a_{n-1} z^{n-1}+\ldots+a_{0}
$$

On $C,|G(z)| \leq\left|a_{n-1}\right||R|^{n-1}+\left|a_{n-2}\right| R^{n-2}+\ldots+\left|a_{0}\right|<\left|a_{n}\right| R^{n}$ if R is sufficiently large.
Since F has n zeroes (counting multiplicity), by Rouche's theorem, $F+G$ has exactly n zeroes in $\{|z|<R\}$.
One should also prove that for $|z|=R$ large there are no zeroes.
Solution to (b): We take

$$
F(z)=4 z^{2} e^{z+1}, G(z)=z^{20}-3 z^{8}
$$

and estimate on the circle $|z|=1$

$$
|G(z)| \leq|z|^{20}+3 \leq 4,|F(z)|=4 e^{\operatorname{Re}(z)+1} \geq 4
$$

A more closer look shows that

$$
|G(z)|<|F(z)|
$$

Since the function $F(z)$ has two zeroes in $\{|z|<1\}$, by Rouche's theorem, $f(z)=z^{20}+4 z^{2} e^{z+1}-3 z^{8}$ also has two zeroes in the unit disk $\{|z|<1\}$.
6. (20pints) (a) (10points) Classify all analytic functions having the property that

$$
f(z+m+n i)=f(z) \quad(z \in \mathbb{C}, m, n \in \mathbb{Z})
$$

where \mathbb{Z} denotes the set of integers.
(b) (10points) Let $\Omega=\left\{z \in \mathbb{C}\left|\frac{3}{4} \pi<|z|<\frac{7}{4} \pi\right\}\right.$. Show that there does not exist a sequence $\left\{P_{n}(z)\right\}$ of polynomials in z such that $P_{n}(z) \rightarrow \tan (z)$ uniformly in any compact set in Ω.

Solution:

Solution to (a): We claim that f must be constant. In fact, let $S=[0,1] \times[0,1]$. The perioidicity condition on f gives that $f(\mathbb{C})=f(S)$. Since S is compact and f is continuous (it is holomorphic), it follows that f is bounded on S, and therefore, f is bounded on \mathbb{C}. By Liouville's Theorem, we deduce that f is constant.

Solution to (b): We prove it by contradiction. Suppose that there does exist a sequence $\left\{P_{n}(z)\right\}$ of polynomials in z such that $P_{n}(z) \rightarrow \tan (z)$ uniformly in any compact set in Ω. In particular, we take

$$
C=\{|z|=\pi\}
$$

By Cauchy residue theorem,

$$
\int_{C} P_{n}(z) d z=0
$$

By uniform convergence we then have

$$
\int_{C} \tan (z) d z=0
$$

But $\tan (z)$ has two poles $z=\frac{\pi}{2},-\frac{\pi}{2}$ inside $\{|z|<\pi\}$ with residue -1 and hence

$$
\int_{C} \tan (z) d z=-4 \pi i
$$

This reaches a contradiction.

