
Analysis Qualifying Exam (Draft)
(January XX, 2014)

1. (10 points) Prove that the series
∞∑

n=1

x2 cos(n2x)
n2

converges pointwise to a continuous function on R.

Solution: On any bounded interval [−R, R], we have
∣∣∣∣
x2 cos(n2x)

n2

∣∣∣∣ ≤
R2

n2

and the series
∑∞

n=1
R2

n2 is convergent. Hence the original series is uniformly convergent on any
interval [−R, R], and the summands are continuous, so that the series is pointwise convergent to a
continuous function on [−R, R]. Since R was arbitrary, the limit is continuous on R.

2. (10 points) Use Green’s theorem to evaluate the line integral
∫

C

F · dr, where F = ex2
i + e2x+yj and C

is the boundary of the rectangle in R2 with vertices (0, 0), (0, 1), (2, 1) and (2, 0), oriented clockwise.

Solution:∫
C

F · dr = − ∫∫
D

(2e2x+y − 0)dA, where D is the rectangle as above. (The minus sign is because C
is negatively oriented.) So

∫

C

F · dr = −
∫ 2

0

∫ 1

0

2e2x+ydydx = −
∫ 2

0

2e2xdx

∫ 1

0

eydy = −
(
e2x|20

)(
ey|10

)
= −(e4 − 1)(e− 1).

3. (10 points) Assume that a function f : R→ R is differentiable on [a, b], f(a) = 0, and that there exists
a constant C ≥ 0 such that |f ′(x)| ≤ C|f(x)| for x ∈ [a, b]. Prove that f(x) ≡ 0 on [a, b].

Solution: Suppose that f 6≡ 0, then there is a x ∈ (a, b] such that f(x) 6= 0. Without loss
of generality, we may assume that f(x) > 0. Since f is continuous, we can choose an interval
(a1, b1) ⊂ [a, b] such that f(x) > 0 on (a1, b1). Taking a1 as small as possible, we may further
assume that a1 = 0 (note that a1 ≥ a since f(a) = 0.) Let a1 < x < y < b1, then by the mean value
theorem

| ln f(y)− ln f(x)| = |(ln f)′(θ)| = |f ′(θ)|
|f(θ)|

for some θ ∈ (x, y). By the assumption on f , we get that | ln f(y)−ln f(x)| ≤ C for all x, y ∈ (a1, b1).
But if x ↘ a1, then f(x) ↘ 0, so that ln f(x) → ∞ and | ln f(y)− ln f(x)| → ∞ for any fixed y, a
contradiction.

4. (20 points). Evaluate the integral
∫ ∞

0

xα

1 + x + x2
dx where 0 < α < 1.



Solution: We use a branch cut for zα; we take this along the positive real axis and define

zα = rαeiαθ

where z = reiθ and 0 ≤ θ < 2π.

Consider ∫

C

zα

1 + z + z2
dz

where the keyhole contour C consists of a large circle CR of radius R, a small circle Cε of radius ε
(to avoid the singularity of zα at z = 0) and two lines just above and below the branch cut.

The contribution from CR is O(Rα−2)× 2πR = O(Rα−1) → 0 as R → +∞.

The contribution from Cε is (substituting z = εeiθ on Cε)

∫ 0

2π

εαeiαθ

1 + εeiθ + ε2e2iθ
iεeiθdθ = O(εα+1) → 0

The contribution from just above the branch cut is

∫ R

ε

xα

1 + x + x2
dx → I

as ε → 0 and R → +∞. The contribution from just below the branch cut is
∫ ε

R

xαe2απi

1 + x + x2
dx → −e2αiI

as ε → 0 and R → +∞.

Hence ∫

C

zα

1 + z + z2
dz → (1− e2παi)I

as ε → 0 and R →∞.

But the integrand is equal to
zα

(z − e
2
3 πi)(z − e

4π
3 i)

so the poles inside C are at e
2π
3 i with residue e

2απ
3 i

i and at e
4π
3 i with residue e

4απ
3 i

−i .

We conclude that

(1− e2παi)I = 2πi(
e

2απ
3 i

i
+

e
4απ
3 i

−i
)

I = 2π
sin απ

3

sin(απ)

5. (20points) (a) (10points) Use Rouche’s theorem to prove the Fundamental Theorem of Algebra: every
non-zero, single-variable, degree n polynomial with complex coefficients has, counted with multiplicity,
exactly n roots.
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(b) (10points) How many zeroes does the function f(z) = z20 + 4z2ez+1 − 3z8 have in the unit disk
{|z| < 1}?

Solution:

Solution to (a): Let Pn(z) = anzn + an−1z
n−1 + ... + a0 and C = {|z| = R} where R is large. Now

choose
F (z) = zn, G(z) = an−1z

n−1 + ... + a0

On C, |G(z)| ≤ |an−1||R|n−1 + |an−2|Rn−2 + ... + |a0| < |an|Rn if R is sufficiently large.

Since F has n zeroes (counting multiplicity), by Rouche’s theorem, F + G has exactly n zeroes in
{|z| < R}.
One should also prove that for |z| = R large there are no zeroes.

Solution to (b): We take
F (z) = 4z2ez+1, G(z) = z20 − 3z8

and estimate on the circle |z| = 1

|G(z)| ≤ |z|20 + 3 ≤ 4, |F (z)| = 4eRe(z)+1 ≥ 4

A more closer look shows that
|G(z)| < |F (z)|

Since the function F (z) has two zeroes in {|z| < 1}, by Rouche’s theorem, f(z) = z20+4z2ez+1−3z8

also has two zeroes in the unit disk {|z| < 1}.

6. (20pints) (a) (10points) Classify all analytic functions having the property that

f(z + m + ni) = f(z) (z ∈ C,m, n ∈ Z)

where Z denotes the set of integers.

(b) (10points) Let Ω = {z ∈ C | 3
4π < |z| < 7

4π}. Show that there does not exist a sequence {Pn(z)} of
polynomials in z such that Pn(z) → tan(z) uniformly in any compact set in Ω.

Solution:

Solution to (a): We claim that f must be constant. In fact, let S = [0, 1] × [0, 1]. The perioidicity
condition on f gives that f(C) = f(S). Since S is compact and f is continuous (it is holomorphic),
it follows that f is bounded on S, and therefore, f is bounded on C. By Liouville’s Theorem, we
deduce that f is constant.

Solution to (b): We prove it by contradiction. Suppose that there does exist a sequence {Pn(z)} of
polynomials in z such that Pn(z) → tan(z) uniformly in any compact set in Ω. In particular, we
take

C = {|z| = π}
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By Cauchy residue theorem, ∫

C

Pn(z)dz = 0

By uniform convergence we then have
∫

C

tan(z)dz = 0

But tan(z) has two poles z = π
2 ,−π

2 inside {|z| < π} with residue −1 and hence
∫

C

tan(z)dz = −4πi

This reaches a contradiction.
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