- 1. (10 points) Let $A \in M_{n,n}(\mathbb{R})$ be a matrix of rank n-1. Let $L_A : M_{n,n}(\mathbb{R}) \longrightarrow M_{n,n}(\mathbb{R})$ be the function given by $L_A(B) = A \cdot B$.
 - (a) Show that L_A is a linear map.
 - (b) Find the dimension of the image of L_A .
 - (c) Find a basis for the image of L_A .
- 2. (10 points) Let $k \in \mathbb{N}$, let $A_1, \ldots, A_k \in M_{n,n}(\mathbb{R})$ and let

$$B = \sum_{i=1}^{k} A_i \cdot A_i^t,$$

where for each matrix C, we denote by C^t its transpose.

- (a) Prove that B is a symmetric matrix.
- (b) Prove that B is a positive definite matrix, i.e. for each vector $v \in M_{n,1}(\mathbb{R})$, the dot product $\langle Bv, v \rangle$ is nonnegative.
- (c) Prove that $det(B) \ge 0$.
- 3. (10 points) Solve the following system of linear equations:

$$\begin{cases} x_1 + x_2 + x_3 + x_4 &= 0\\ 2x_1 + 4x_2 + 8x_3 + 10x_4 &= 2\\ -2x_1 - x_2 + x_3 + 2x_4 &= 1\\ -10x_1 - 8x_2 - 4x_3 - 2x_4 &= 2 \end{cases}$$

Explain your answer.

- 4. (10 points) Find the solution y(t) of $y'' + y' 2y = 4te^{2t}$ satisfying y(0) = y'(0) = 0.
- 5. (10 points) Consider the autonomous system

$$\dot{x} = 2y - xf(x, y)$$
$$\dot{y} = -x - yf(x, y)$$

where f(x, y) is a smooth real valued function on the plane.

- (a) Find the critical point(s) of the system.
- (b) Find a function f(x, y) so that all solutions x(t), y(t) are bounded for all t, but do not all converge to a critical point as $t \to \infty$.
- (c) Determine the long time behaviour of solutions if f(x, y) > 0.
- (d) Find an example of a function f(x, y) and an initial condition so that the solution x(t), y(t) blows up in finite time.
- 6. (10 points) Consider the Sturm-Liouville problem

$$y''(x) + \lambda y(x) = 0$$

on the interval $0 \le x \le 1$, with boundary conditions

$$y(0) = 0$$

 $y(1) + y'(1) = 0.$

Let $\lambda_1 \leq \lambda_2, \leq \lambda_3 \cdots$ be the eigenvalues listed in increasing order.

- (a) Show that $\lambda_1 > 0$.
- (b) Write down the equation that determines the eigenvalues and give a qualitative description of the large n behaviour of λ_n .
- (c) Determine the eigenfunctions $\varphi_n(x)$, normalized so that $\int_0^1 \varphi_n(x)^2 dx = 1$, in terms of the eigenvalues you found in the previous part.
- (d) Use an eigenfunction expansion to solve

$$u_t(x,t) = u_{xx}(x,t) + t$$

for $0 \le x \le 1$ and $t \ge 0$ where

$$u(0,t) = 0$$
$$u(1,t) + u_x(1,t) = 0$$
$$u(x,0) = 0$$