Qualifying Exam Problems: Differential Equations

1. (10 points) Let $A \in M_{n, n}(\mathbb{R})$ be a matrix of rank $n-1$. Let $L_{A}: M_{n, n}(\mathbb{R}) \longrightarrow M_{n, n}(\mathbb{R})$ be the function given by $L_{A}(B)=A \cdot B$.
(a) Show that L_{A} is a linear map.
(b) Find the dimension of the image of L_{A}.
(c) Find a basis for the image of L_{A}.
2. (10 points) Let $k \in \mathbb{N}$, let $A_{1}, \ldots, A_{k} \in M_{n, n}(\mathbb{R})$ and let

$$
B=\sum_{i=1}^{k} A_{i} \cdot A_{i}^{t}
$$

where for each matrix C, we denote by C^{t} its transpose.
(a) Prove that B is a symmetric matrix.
(b) Prove that B is a positive definite matrix, i.e. for each vector $v \in M_{n, 1}(\mathbb{R})$, the dot product $\langle B v, v\rangle$ is nonnegative.
(c) Prove that $\operatorname{det}(B) \geq 0$.
3. (10 points) Solve the following system of linear equations:

$$
\left\{\begin{array}{cl}
x_{1}+x_{2}+x_{3}+x_{4} & =0 \\
2 x_{1}+4 x_{2}+8 x_{3}+10 x_{4} & =2 \\
-2 x_{1}-x_{2}+x_{3}+2 x_{4} & =1 \\
-10 x_{1}-8 x_{2}-4 x_{3}-2 x_{4} & =2
\end{array} .\right.
$$

Explain your answer.
4. (10 points) Find the solution $y(t)$ of $y^{\prime \prime}+y^{\prime}-2 y=4 t e^{2 t}$ satisfying $y(0)=y^{\prime}(0)=0$.
5. (10 points) Consider the autonomous system

$$
\begin{aligned}
& \dot{x}=2 y-x f(x, y) \\
& \dot{y}=-x-y f(x, y)
\end{aligned}
$$

where $f(x, y)$ is a smooth real valued function on the plane.
(a) Find the critical point(s) of the system.
(b) Find a function $f(x, y)$ so that all solutions $x(t), y(t)$ are bounded for all t, but do not all converge to a critical point as $t \rightarrow \infty$.
(c) Determine the long time behaviour of solutions if $f(x, y)>0$.
(d) Find an example of a function $f(x, y)$ and an initial condition so that the solution $x(t), y(t)$ blows up in finite time.
6. (10 points) Consider the Sturm-Liouville problem

$$
y^{\prime \prime}(x)+\lambda y(x)=0
$$

on the interval $0 \leq x \leq 1$, with boundary conditions

$$
\begin{aligned}
y(0) & =0 \\
y(1)+y^{\prime}(1) & =0
\end{aligned}
$$

Let $\lambda_{1} \leq \lambda_{2}, \leq \lambda_{3} \cdots$ be the eigenvalues listed in increasing order.
(a) Show that $\lambda_{1}>0$.
(b) Write down the equation that determines the eigenvalues and give a qualitative description of the large n behaviour of λ_{n}.
(c) Determine the eigenfunctions $\varphi_{n}(x)$, normalized so that $\int_{0}^{1} \varphi_{n}(x)^{2} d x=1$, in terms of the eigenvalues you found in the previous part.
(d) Use an eigenfunction expansion to solve

$$
u_{t}(x, t)=u_{x x}(x, t)+t
$$

for $0 \leq x \leq 1$ and $t \geq 0$ where

$$
\begin{aligned}
u(0, t) & =0 \\
u(1, t)+u_{x}(1, t) & =0 \\
u(x, 0) & =0
\end{aligned}
$$

