
Applied Mathematics Qualifying Exam, September 6, 2003

Part I

1. For what values of r and n is there an n× n-matrix of rank r, with real entries, such
that A2 = 0? Here 0 denotes the n× n zero matrix.

2. Show that there is no real n× n matrix A such that

A2 =


−a1 0 . . . 0

0 −a2 . . . 0
. . .
0 0 . . . −an

 ,

where a1, . . . , an are distinct positive real numbers.

3. Define Tr(A) =
∑n

i=1 aii to be the trace of the complex n× n matrix A = (aij). Prove
that

(a) Tr (BAB−1) = Tr(A) for any invertible matrix B.

(b) Tr(A) =
∑n

i=1 λi, where λi for i = 1, .., n are the eigenvalues ofA repeated according
to multiplicity.

4. Consider the Fourier series of the real-valued function f on the interval [−π, π] of the
form:

a0 +

∞∑
n=1

(an cos(nx) + bn sin(nx))

(a) Suppose that f(x) is differentiable on [−π, π], f(−π) = f(π), and f
′
(x), f

′′
(x) are

piecewise continuous, with jump discontinuities. Then, stating carefully any theorems
you may use, show that

1

π

∫ π

−π
|f ′(x)|2 dx =

∞∑
n=1

n2(a2
n + b2

n) .

(b) Next, suppose that f(x) has two continuous derivatives on [−π, π]. Show that its
Fourier Cosine coefficients obey the bound |an| < C/n2 for some appropriate constant
C.

5. The surface S is defined by x2/a2 + y2/b2 + z2/c2 = 1, where 0 < a < b < c < 1. Let
Q = (0, 1, 1). Find the point P on S that is closest to Q.

6. Determine all entire functions f : C −→ C that satisfy |f(z)| ≤ eRe(z) for all complex
z. (An entire function is one that is analytic for all complex z.)
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7. Use contour integration to evaluate the integral

∫ ∞
−∞

sin πx

x2 + x+ 1
dx.

8. (a) Show that all the zeros of the polynomial f(z) = z8−3z+1 lie in the disk |z| < 5/4.
(b) How many zeros does f have in the unit circle?

9. Let C be a simple closed C1-curve in R2 with the positive orientation enclosing a region
D. Assume D has area 2 and centroid (3, 4). Let F(x, y) = (y2, x2 + 3x). Find the line
integral

∫
C

F · ds.

10. Consider the following heat equation for u(x, y, t) in two spatial dimensions:

ut = D1uxx +D2uyy , −∞ < x <∞ , −∞ < y <∞ , t > 0 ,

u(x, y, 0) = δ(x)δ(y) .

Here δ(x) denotes the Dirac delta function. In addition, D1 > 0 and D2 > 0 are
constants. Assuming that u(x, y, t)→ 0 as x2 + y2 →∞, calculate the solution using
Fourier Transforms. For a fixed value of t, what are the curves of constant u in the
(x, y) plane?

11. Consider the following radially symmetric heat equation for u = u(r, t) in an insulated
sphere of radius R with R > 0:

ut = D

(
urr +

2

r
ur

)
, 0 < r < R , t > 0 ,

u(r, 0) = u0

( r
R

)2

; ur(R, t) = 0 ; with u bounded as r → 0 .

Here D > 0 and u0 > 0 are constants.

(a) Non-dimensionalize the problem.

(b) Calculate the steady-state limt→∞ u(r, t).

(c) Derive an approximation for u valid for long time that shows the approach of u to the
steady-state solution. (Hint: The substitution v(r) = f(r)/r in vrr + (2/r) vr + λv = 0
yields a simple equation for v.)



12. A model for the outbreak of an insect infestation in the presence of predators is

dN

dt
= RN

(
1− N

K

)
− P (N) .

Here R > 0 and K > 0 are constants, N is the population of insects at time t, and the
predation term P (N) is

P (N) =
BN2

A2 +N2
,

where A > 0 and B > 0 are constants.

(a) Non-dimensionalize the model to the form

dx

dτ
= rx

(
1− x

κ

)
− x2

1 + x2
. (4)

(b) Graphically determine the equilibrium solutions for (4).

(c) Show that for a fixed r not too small, there is a range of values of k where there
are multiple stable steady-state solutions for (4).


